Shows a projection of birth and death rate over time, creating the elements of the demographic transition. This one is for Tanzania.
Shows a projection of birth and death rate over time, creating the elements of the demographic transition. This one is for Tanzania.
Show relation of birth and death rate over time, creating the elements of the demographic transition. This one is for Sweden. You can clone this insight for other nations, just plug in the new crude birth and death rates and find the starting population in 1960.
Show relation of birth and death rate over time, creating the elements of the demographic transition. This one is for Sweden. You can clone this insight for other nations, just plug in the new crude birth and death rates and find the starting population in 1960.
Here we model the population of Algeria given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the
Here we model the population of Algeria given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the net birth rate would be zero, and used this year for our birth and death rates to are equal to zero. We assumed no net movement of people into or out of Algeria.
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

Modelagem do estado psicológico de uma população. Inicialmente, todos os indivíduos estão no estado "Calmo". Com o passar do tempo e com as interações mútuas, há o surgimento e progressivo aumento do total de indivíduos com raiva (estado "Raivoso"). Deste estado e, com o passar do tempo, os indivídu
Modelagem do estado psicológico de uma população. Inicialmente, todos os indivíduos estão no estado "Calmo". Com o passar do tempo e com as interações mútuas, há o surgimento e progressivo aumento do total de indivíduos com raiva (estado "Raivoso"). Deste estado e, com o passar do tempo, os indivíduos podem evoluir mentalmente e atingirem o estado "Indiferente", nos quais eles se tornam indiferentes à qualquer interação. Outra possibilidade é o indivíduo se enriquecer e, assim, atingir a felicidade (estado "Feliz").
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


 This is a basic model for use with our lab section.  The full BIDE options.

This is a basic model for use with our lab section.  The full BIDE options.

 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

  Between 1999 and 2006 Koala population had dropped 26% in Queensland.   By 2008 it was estimated there were around 2300 Koalas with more than a 50% population loss in less than 3 years.   Main threats for Koala survival are a loss of habitat, vehicular trauma, dog attacks, urbanisation, disease an
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a population model designed for local health and care systems (United Kingdom). This model does not simulation male/female, but rather everyone in 5-year age groups.
This is a population model designed for local health and care systems (United Kingdom). This model does not simulation male/female, but rather everyone in 5-year age groups.