Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Based on Psychological Medicine Dec 2015 articleDepression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here
Based on Psychological Medicine Dec 2015 articleDepression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here. See also 2018 N. Hosseinichimeh Plos ONE article for rumination focussed SD simulation
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Stock flow map of Immune System Cell type proliferation and differentiation, migration and circulation from Figs 1.3, 8.14 and 8.33 from Janeway's Immunobiology see Insight . Does not include cell death, interactions or inhibitory and promoting factors
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Based on Psychological Medicine Dec 2015 articleDepression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Based on Psychological Medicine Dec 2015 articleDepression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here. See also 2018 N. Hosseinichimeh Plos ONE article for rumination focussed SD simulation
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.
Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker
Glucose Insulin Model Info:
Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.