Create an Insight Maker account to start building models. Insight Maker is completely free.


Start Now

Insight Maker runs in your web-browser. No downloads or plugins are needed. Start converting your ideas into your rich pictures, simulation models and Insights now. Features

Simulate

Explore powerful simulation algorithms for System Dynamics and Agent Based Modeling. Use System Dynamics to gain insights into your system and Agent Based Modeling to dig into the details. Types of Modeling

Collaborate

Sharing models has never been this easy. Send a link, embed in a blog, or collaborate with others. It couldn't be simpler. More

Free & Open

Build your models for free. Share them with others for free. Harness the power of Insight Maker for free. Open code mean security and transparency. More


Explore What Others Are Building

Here is a sample of public Insights made by Insight Maker users. This list is auto-generated and updated daily.

 Goodwin cycle  IM-2010  with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment.

Goodwin cycle IM-2010 with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment.

This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.   By adjusting the sliders below you can    observe the work process  without  any work in process limitations ( WIP Limits ),   with process step specific WIP Limits* (
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.

By adjusting the sliders below you can 
  • observe the work process without any work in process limitations (WIP Limits), 
  • with process step specific WIP Limits* (work state WIP limits), 
  • or you may want to see the impact of the Tameflow approach with Kanban Token and Replenishment Token 
  • or see the impact of the Drum-Buffer-Rope** method. 
* Well know in (agile) Kanban
** Known in the physical world of factory production

The "Tameflow approach" using Kanban Token and Replenishment Token as well as the Drum-Buffer-Rope method take oth the Constraint (the weakest link of the work process) into consideration when pulling in new work items into the delivery "system". 

You can also simulate the effects of PUSH instead of PULL. 

Feel free to play around and recognize the different effects of work scheduling methods. 

If you have questions or feedback get in touch via twitter @swilluda

The work flow itself
Look at the simulation as if you would look on a kanban board

The simulation mimics a "typical" software delivery process. 

From left to right you find the following ten process steps. 
  1. Input Queue (Backlog)
  2. Selected for work (waiting for analysis or work break down)
  3. Analyse, break down and understand
  4. Waiting for development
  5. In development
  6. Waiting for review
  7. In review
  8. Waiting for deployment
  9. In deployment
  10. Done
Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
 This model is derived from the paper " Nobody Ever Gets Credit for Fixing Problems that Never Happened: Creating and Sustaining Process Improvement " by Nelson P. Repenning and John D Sterman. See  Insight 752  for a causal loop version of this model.  @ LinkedIn ,  Twitter ,  YouTube

This model is derived from the paper "Nobody Ever Gets Credit for Fixing Problems that Never Happened: Creating and Sustaining Process Improvement" by Nelson P. Repenning and John D Sterman. See Insight 752 for a causal loop version of this model.

@LinkedInTwitterYouTube

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:     Koot, M., & Wijnhoven, F. (2021). Usage impa
This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:

Koot, M., & Wijnhoven, F. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798. DOI: https://doi.org/10.1016/j.apenergy.2021.116798.