MODEL EXPLANATION:  This model simulates possible crime patterns
among the youth population of Bourke, where levels of alienation, policing
and community engagement expenditure can be manipulated. Here the youth in Bourke have a minimum percentage of interest to participate in community activities

MODEL EXPLANATION:

This model simulates possible crime patterns among the youth population of Bourke, where levels of alienation, policing and community engagement expenditure can be manipulated. Here the youth in Bourke have a minimum percentage of interest to participate in community activities in which the government aims to improve their lifestyle and therefore reduce the rate of criminal activity. ASSUMPTIONS:There are 1500 youths of Bourke in the population susceptible to committing crime and simulations of criminal tendencies are only based the factors presented, no external influences.
VARIABLES:“Alienation” includes any factors that can increase the likelihood of youths to commit crime such as exposure to domestic violence, household income, education level, and family background‘Community engagement Expenditure’ is the total monies budgeted into community activities to develop youths in and out of Juvenile detention‘Policing’ is the amount of police placed onto patrol in the town of Bourke to reinforce safety and that the law is abided by. STOCKS:Conviction rate is set to 60%A juvenile detention sentence for convicted criminals is set to 3 monthsThe top 30% of the most severe offenders are sent to rehabilitation for 3 months, to which they return to Bourke, assumingly in a better state and less likely to repeat a petty crimeCommunity activities are set to last for 3 months to align with the seasons: these could be sporting clubs or youth groupsCommunity participants have a 20% chance of being disengaged as it may not align with their interestsInvestments into policing are felt immediately& community engagement expenditure has a delay of 3 months
INTERESTING FINDS:1.    Alienation set to max (0.2), policing and community engagement set to minimum shows a simulation whereby all criminals are in town rather than being expedited and placed into juvenile detention, even after a base value of 200 youths placed into juvenile detention – this shows that budget is required to control the overwhelming number of criminal youths as they overrun Bourke2.    Set community activity to 0.01, policing to max & Alienation to max. A lack of community activity can produce high disengagement amongst youths regardless of police enforcement to the town of Bourke that has a high criminal rate. Juvenile detention only lasts for so long and not all youths can be rehabilitated, so they are released back into Bourke with chances of re-committing crime. 3.    Alienation plays a major role in affecting youths to consider committing crime. To keep criminal activity to a minimum, ideally the maximum rates of budget in policing and community engagement within youths highly at risk of committing crime should be pushed. Realistically, budget is a sensitive case within a small town and may not be practical. 4. Set policing to 0.25, community engagement to 0.2 & alienation to 0.04. Moderate expenditure to community activities and policing can produce high engagement rates and improved youths in the town of Bourke.



           This version 8B of the   CAPABILITY DEMONSTRATION   model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified forma
This version 8B of the CAPABILITY DEMONSTRATION model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further developed and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
 Clone of  IM-806  modified to integrate AnyLogic Realworld, Model World with Van de Ven Engaged Scholarship and LAnd Use Modelling approaches. See also  Complex Decision Technologies IM

Clone of IM-806 modified to integrate AnyLogic Realworld, Model World with Van de Ven Engaged Scholarship and LAnd Use Modelling approaches. See also Complex Decision Technologies IM

           This version of the   CAPABILITY DEMONSTRATION   model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Re
This version of the CAPABILITY DEMONSTRATION model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further de-abstracted and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of  IM-14982  combined with  IM-17598  and  IM-9773
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of IM-14982 combined with IM-17598 and IM-9773
This is a model which attempts to replicate a simple reinforcing loop described by Dennis Sherwood on page 75-87 of his book 'Seeing the forest for the trees - a manager's guide to applying systems thinking.  This is not a realistic model but I just wanted to reproduce it as practice of implementing
This is a model which attempts to replicate a simple reinforcing loop described by Dennis Sherwood on page 75-87 of his book 'Seeing the forest for the trees - a manager's guide to applying systems thinking.

This is not a realistic model but I just wanted to reproduce it as practice of implementing causal loop models.

www.stantonattree.com