Insight diagram
COVID-19 in Japan 2020 самостоятельная работа
Insight diagram
Systemigram Model COVID-19
Insight diagram

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


COVID-19 Outbreak in Burnie Tasmania (Rajaa Sajjad, 538837)
Insight diagram
This model is to show the status of numbers of infected people, recovered people and deaths during COVID-19 in Burnie Australia. It also shows impact on the growth of economy. 

Variables
The infection rate and the percentage of people washing their hands are influencing the infected number of people. Also, there are death rate and recovery rate and immunity lost rate determining the numbers of deaths, recovered and infected-again people.  
for the economy growth, there are several factors, including unemployment rate, infection rate, economic growth rate and government health policy. 

Perspective
After some time, people will recovered, also the economic activities. 
A model of Burnie during COVID-19
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Clone of Burnie COVID-19 outbreak demo model version 2
Insight diagram
Covid-19 in Italy
Insight diagram
This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.

Assumptions can be made that effective government intervention can reduce the number of people infected, whereas the local economy is severely impacted.

Insights:
1. When COVID-19 case are more than 10, government policy will be triggered.

2. Testing rate is very crucial to understanding the spread of the pandemic and responding appropriately.


BMA708_Marketing insights_Covid-19 Outbreak in Burnie Tasmania_Jing XU
Insight diagram
Самостоятельная Асадбека
Covid-19 in USA
3 months ago
Insight diagram
This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to Gabo HN for the original insight. The following links are theirs:

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Andy Long
Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]



Resources:
  * https://annals.org/aim/fullarticle/2762808/incubation-period-coronavirus-disease-2019-covid-19-from-publicly-reported
Final Version of Italian COVID-19 outbreak
Insight diagram

This model describes the whole process about government response and economic impact when the covid-19 outbreak in Burnie, Tasmania. When the reported cases increase to a certain level, the government realizes its high risk, then publishes a series of policies to protect the public, such as travel restriction, social distance and quarantine. The economic damage is also severe, especially for tourism and hostility industry and retail industry.

 

Clearly, in the beginning, the number of infected people and death cases increase sharply, but due to government policies and vaccination, it effectively reduces covid-19 cases. For economy, on one hand, the government health policies slow down the pace of growth, on the other hand, the government build vaccine confidence, which leads to more people getting vaccinated, and help the economy back to normal.

Covid-19 outbreak in Burnie Tasmania
Insight diagram
Агентное моделирование по COVID-19
Insight diagram
Tugas mata kuliah pemodelan modifikasi model Covid -19 an. Faqih, Aji, dan Wahyu
Tugas Modifikasi Model Covid-19
Insight diagram
Introduction:
This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.

Assumptions:
This model has four variables that influence the number of COVID-19 cases: infection rate, immunity loss rate, recovery rate and death rate.

In order to reduce the pandemic spread, in this model, assume the government released six policies when Burnie COVID-19 cases are equal or over 10 cases. Policies are vaccination promotion, travel restriction to Burnie, quarantine, social distance, lockdown and testing rate.

Government policies would reduce the pandemic. However, it decreases economic growth at the same time. In this model, only list three variable that influence local economic activities. 
Travel restrictions and quarantine will reduce Burnie tourism and decrease the local economy. On the other hand, quarantine, social distance, lockdown allow people to stay at home, increasing E-commerce business.
As a result, policies that cause fewer COVID-19 cases also cause more considerable negative damage to the economy.

Interesting insights:
One of the interesting findings is that the government policy would reduce the COVID-19 spread significantly if I adjust the total government policies are over 20% (vaccine promotion, travel restriction, quarantine, social distance, lockdown), 3560 people will die, then no more people get COVID-19.
However, if I change the total government policy to less than 5%, the whole Burnie people will die according to the model. Therefore, we need to follow the polices, which saves our lives.
BMA708 assignment3 - Model of COVID-19 outbreak in Burnie
Insight diagram
COVID-19 S&F PT1
Insight diagram
Самостоятельная работа COVID-19 2023г.
10 months ago
Insight diagram
COVID-19 в Бразилии (агентное моделирование)
3 months ago
Insight diagram
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
SEIR Model for COVID-19 in Indonesia
Insight diagram
This model is cloned thru an Agent-Based Modeling Simulation of "Covid-19 (ABM)_VHK" Model by Venkata Habiram Koppaka last April 2020 for presenting the Pandemic COVID-19 Disease. This ABM Simulation aims to represent the trend of COVID-19 infection and death rate (dynamics) at Puerto Princesa City, PALAWAN using the June 3, 2021 data of the CESU-PPC.
COVID-19 ABM (SIR) Model of Puerto Princesa City, PALAWAN
Insight diagram
COVID-19 model with hospitalizations and deaths
Insight diagram
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.

Modified by Rio dan Pras
SEIR Model for COVID-19 in Indonesia - case study SLEMAN
Insight diagram
Системная динамика COVID-19 в Казахстане в 2020 году
Insight diagram
Covid-19 pandemi