Insight diagram
​Modelo Epidemiológico para os Casos de Covid-19

Insigh Authors:
Luis Felipe (UFSM)
Carlos Heitor (UFSM)
Paulo Vilella (UFJF)
Modelo UFSM - COVID-19
Insight diagram
Covid-19 in England
10 months ago
Insight diagram
Tugas Kelompok Teknik Pemodelan dan Simulasi
SIR Model Covid-19
Insight diagram

This Model was developed from the SEIR model (Susceptible, Enposed, Infected, Recovered). It was designed to explore relationships between the government policies regarding the COVID-19 and its impact upon the economy as well as well-being of residents. 

Assumptions:

Government policies will be triggered when reported COVID-19 case are 10 or less;


Government Policies affect the economy and the COV-19 infection negatively at the same time;


Government Policies can be divided as 4 categories, which are Social Distancing, Business Restrictions, Lock Down, Travel Ban, and Hygiene Level, and they represented strength of different aspects;

 

Parameters:

Policies like Social Distancing, Business Restrictions, Lock Down, Travel Ban all have different weights and caps, and they add up to 1 in total;

 

There are 4 cases on March 9th; 

Ro= 5.7  Ro is the reproduction number, here it means one person with COVID-19 can potentially transmit the coronavirus to 5 to 6 people;


Interesting Insights:

Economy will grow at the beginning few weeks then becoming stagnant for a very long time;

Exposed people are significant, which requires early policies intervention such as social distancing.

Model of COVID-19 Outbreak in Burnie, Tasmania
Insight diagram
botash
Insight diagram
Tugas Pemodelan Transportasi Laut

Memodelkan persebaran pandemik covid-19 menggunakan insightmaker

Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
Pandemic Covid-19 Simulation
Insight diagram
COVID-19 in Japan 2020 самостоятельная работа
Insight diagram
S-I-R covid-19 model
Insight diagram
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022

Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :
Sabilla Halimatus Mahmud
Nurul Widyastuti
Muhammad Najib



Edit Model Penyebaran Covid-19 di Kabupaten Sleman
Insight diagram
Simulasi ini digunakan untuk memodelkan persebaran virus corona di Indonesia untuk kepentingan tugas kuliah
Simulasi Persebaran COVID-19 di Indonesia
Insight diagram

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


COVID-19 Outbreak in Burnie Tasmania (Rajaa Sajjad, 538837)
Insight diagram
Covid-19 in Italy
Insight diagram
Explanation of the Model

This is a sample model of Covid-19 outbreak in Burnie, Tasmania showing how the Government responds by implementing relevant health policy and the effects on the Economy of the area. 
 
Assumptions

Economic growth rate is dependent on the proportion of the population who can be exposed. Number of COVID cases negatively impacts the economy. Govt policy is triggered when COVID-19 cases are 10 or more.

Interesting Insights

1) Exposure to the disease has a positive relationship with economic growth rate because the more people goes out, more business activity takes place, resulting in Economic Growth.

2) Increasing the Testing rate results in:

- Higher cases being detected

- Stricter Govt Policy

- Less Deaths


 


Covid-19 outbreak in Burnie Tasmania
Insight diagram
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
SEIR Model for COVID-19 in Indonesia (Revised V2)
Insight diagram
Sike Liu's model on COVID-19 & Burnie Economy

 

This model contains three parts, the first part stimulates the COVID-19 pandemic outbreak in Burnie; the second part describes possible government policies on pandemic control; and the third part examines the possible negative impact on economy growth from those policies.


Assumptions:

1. The state boarder has already been closed and all new arrivals in Burnie need to enter a fixed period of quarantine. And the quarantine rate measures the strength of the government policy on quarantine (such as length and method).

2. Patient zero refers to the initial number of undetected virus carriers in the community.

3. Government policies such as social distancing, compulsory mask and lock down could effectively reduce community’s exposure to the virus.

4. Social distancing and compulsory mask will be triggered when COVID-19 cases reach and beyond 10 and lock down will be triggered when cases reach and beyond 1000.

4. High vaccine rate, on the other hand, could effectively reduce the exposed people’s chance of getting infected.

5. Only when vaccine rate reaches 0.6 and beyond, then the spread of COVID-19 will be significantly slowed.

6. Vaccine can’t 100% prevent the infection of the virus.

7.The infected people will need to be tested so that they could be counted as COVID-19 cases and the test rate decides the percentage of infected people being tested.

8. After people recover, there are chances of them losing immunity and the immunity lost rate measures that.

9. The COVID-19 cases could also be detected at quarantine facilities, and the quarantine process will effectively reduce the Infection and exposure rate.

10. Social distancing and compulsory mask wearing are considered as light restrictions in this model and will have less impact on both supply and demand side, and lockdown is considered as heavy restriction which will have strong negative impact on economy growth in this model.

11. In this model, light restrictions will have more negative impacts on the demand side compared to the supply side.

12. In this model, both supply side and demand side will power the economy growth.

 

Interest hints:

The vaccine could significantly reduce the spread of COVID-19 and effectively reduce the number of COVID-19 cases.

The number of the COVID-19 cases will eventually be stabilized when the number of susceptible is running out in a community (reached community immunity).

Quarantine could slightly reduce the cases numbers, but the most effective way is to reduce the number of new arrivals.

BMA708_Assignment 3_Sike Liu_567871_COVID-19 outbreak and Burnie economy
Insight diagram
Explanation:
Explanation:
This model presents the COVID-19 outbreak in Burnie and how the government reacts to it. Moreover, the model also illustrates how the economy in Burnie is impacted by the pandemic. The possible stages of residents when the infectious disease spreads in Burnie can be concluded as Susceptible, Infection and Recovery, which are used as the main data in this model. However, the improvement of decreasing of reported infection rates of this infectious disease and increasing of recovery rates are contributed by the implementation of the Government Health Policy. 

Assumption
The decrease of both infection rate and economic growth are all influenced by the Government Health Policy simultaneously. The Government Health Policy is only triggered when there are 10 cases reported. However, the increase in reporting COVID-19 cases affects economic growth negatively. 

Interesting Insights:
There are two interesting insights that have been revealed from the simulation. First, the death rate continuously increased even though the infection rate goes down. However, the increase in testing rates contributed to the stability of the death rate towards the end of the week. Moreover, higher testing rates also trigger faster government intervention, which can reduce infectious cases.  Second, as the Government Health Policy limited the chance of going out and shopping, the economic growth is negative due to the higher cases. 

BMA708, Assessment 3: Complex system, Burnie Covid-19 outbreak
Insight diagram
Самостоятельная Асадбека
Covid-19 in USA
3 months ago
Insight diagram

Model description: 

This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the government which will impact on the local infection and economy. 

 

Assumption:

Government policies will reduce the mobility of the population as well as the infection. In addition, economic activities in the tourism and hospitality industry will suffer negative influences from the government measures. However, essential businesses like supermarkets will benefit from the health policies on the contrary.

 

Variables:

Infection rate, recovery rate, death rate, testing rate are the variables to the cases of Covid-19. On the other hand, the number of cases is also a variable to the government policies, which directly influences the number of exposed. 

 

The GDP is dependent on the variables of economic activities. Nonetheless, the government’s lockdown measure has also become the variable to the economic activities. 

 

Interesting insights:

Government policies are effective to curb infection by reducing the number of exposed when the case number is greater than 10. The economy becomes stagnant when the case spikes up but it climbs up again when the number of cases is under control. 

Sample Model of COVID-19 outbreak in Burnie Tasmania by Yim Fong Ng (544885)
Insight diagram
Otu_COVID-19_CV
Insight diagram
This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to Gabo HN for the original insight. The following links are theirs:

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Andy Long
Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]

Based on my student Sean's work, I altered the death rate to introduce the notion that doctors are getting better at saving lives:
[deathrate] = 0.02/(.0022*Days()^1.8+1)
I don't agree with this model of the death rate, but it was a start motivated by his work. Thanks Sean!:)

Resources:
  * Recent news: "Since the early days of the outbreak in China, scientists have known that SARS-CoV-2 is unusually contagious — more so than influenza or a typical cold virus. Scientific estimates of the reproduction number — the R0, which is the number of new infections that each infected person generates on average — have varied among different communities and different points but have generally been between 2 and 4. That is significantly higher than seasonal influenza."
  * https://annals.org/aim/fullarticle/2762808/incubation-period-coronavirus-disease-2019-covid-19-from-publicly-reported
  * https://covid19.healthdata.org/italy
Key of Final Version of Italian COVID-19 outbreak
Insight diagram

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

SEIR Infectious Disease Model for COVID-19
677 5 months ago
Insight diagram
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
самостоятельная
10 months ago
Insight diagram
COVID-19 S&F PT1
Insight diagram
Systemigram Model COVID-19