Introduction:  This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.      Assumptions:   This model has four variables that influence the number of COVID-19 cases: infecti
Introduction:
This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.

Assumptions:
This model has four variables that influence the number of COVID-19 cases: infection rate, immunity loss rate, recovery rate and death rate.

In order to reduce the pandemic spread, in this model, assume the government released six policies when Burnie COVID-19 cases are equal or over 10 cases. Policies are vaccination promotion, travel restriction to Burnie, quarantine, social distance, lockdown and testing rate.

Government policies would reduce the pandemic. However, it decreases economic growth at the same time. In this model, only list three variable that influence local economic activities. 
Travel restrictions and quarantine will reduce Burnie tourism and decrease the local economy. On the other hand, quarantine, social distance, lockdown allow people to stay at home, increasing E-commerce business.
As a result, policies that cause fewer COVID-19 cases also cause more considerable negative damage to the economy.

Interesting insights:
One of the interesting findings is that the government policy would reduce the COVID-19 spread significantly if I adjust the total government policies are over 20% (vaccine promotion, travel restriction, quarantine, social distance, lockdown), 3560 people will die, then no more people get COVID-19.
However, if I change the total government policy to less than 5%, the whole Burnie people will die according to the model. Therefore, we need to follow the polices, which saves our lives.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.    Modified by Rio dan Pras
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.

Modified by Rio dan Pras
The System Dynamics Model presents the the COVID-19 status in Сhina
The System Dynamics Model presents the the COVID-19 status in Сhina
 This Model was developed from the SEIR model (Susceptible, Enposed, Infected, Recovered). It was designed to explore relationships between the government policies regarding the COVID-19 and its impact upon the economy as well as well-being of residents.    Assumptions:   Government policies will be

This Model was developed from the SEIR model (Susceptible, Enposed, Infected, Recovered). It was designed to explore relationships between the government policies regarding the COVID-19 and its impact upon the economy as well as well-being of residents. 

Assumptions:

Government policies will be triggered when reported COVID-19 case are 10 or less;


Government Policies affect the economy and the COV-19 infection negatively at the same time;


Government Policies can be divided as 4 categories, which are Social Distancing, Business Restrictions, Lock Down, Travel Ban, and Hygiene Level, and they represented strength of different aspects;

 

Parameters:

Policies like Social Distancing, Business Restrictions, Lock Down, Travel Ban all have different weights and caps, and they add up to 1 in total;

 

There are 4 cases on March 9th; 

Ro= 5.7  Ro is the reproduction number, here it means one person with COVID-19 can potentially transmit the coronavirus to 5 to 6 people;


Interesting Insights:

Economy will grow at the beginning few weeks then becoming stagnant for a very long time;

Exposed people are significant, which requires early policies intervention such as social distancing.

A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy, though, of higher detected cases is negative. 




39 4 months ago
A simple SI (Susceptible-Infectious) model that captures the dynamics of COVID-19.
A simple SI (Susceptible-Infectious) model that captures the dynamics of COVID-19.
69 2 months ago
 Introduction:  This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.        Assumption:    Variables such as infection rate, death rate and the recovery rate are influenced by the actu
Introduction:
This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.

Assumption:
Variables such as infection rate, death rate and the recovery rate are influenced by the actual situation.
The government will implement stricter travel bans and social distant policies as there are more cases.
Government policies reduce infection and limit economic growth at the same time.
A greater number of COVID-19 cases has a negative effect on the economy.

Interesting insights:
A higher testing rate will make the infection increase and the infection rate will slightly increase as well. 
Government policies are effective to lower the infection, however, they will damage the local economy. While the higher number of COVID-19 cases also influences economic activities.
This model estimates the deaths due to COVID19 in Bangalore City.  Assumptions:  City has a population = 80 Million  Initial infected population = 10  Probability of infection = 8%  Contact rate in population = 6  Average duration of recovery = 10 days  Death rate = 1%  Quarantine rate = 80%  Delay
This model estimates the deaths due to COVID19 in Bangalore City. 
Assumptions:
City has a population = 80 Million
Initial infected population = 10
Probability of infection = 8%
Contact rate in population = 6
Average duration of recovery = 10 days
Death rate = 1%
Quarantine rate = 80%
Delay in quarantine = 5 days