Unfolding story based on Bogdanov's original A Short Course of Economic Science  text  and Pilyugina's 2019  article
Unfolding story based on Bogdanov's original A Short Course of Economic Science text and Pilyugina's 2019 article
10 months ago
Clone of Pesticide Use in Central America for Lab work        This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.     The cotto
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems. See also A Prosperous Way Down  website
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems.
See also A Prosperous Way Down website
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.    It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10.      Government interventi
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.

It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10. 

Government intervention - lock down the state, suppress the development of COVID-19 effectively. It is related to most of people stay at home to reduce the exposure in public area.
On the other hand, it also bring the economy of Burnie in the recession, as no tourists, no dining out activities and decrease in money spending in the city.
Based on the Market and Price simulation model in System Zoo 3.
Based on the Market and Price simulation model in System Zoo 3.
  The World Socio-Economics model is computer model to simulate the consequence of interactions between the earth and human systems based on the World3 model by the work of Club of Rome, The Limits to Growth[1].     The World3 model builds by system dynamics theory that is has an approach to underst
The World Socio-Economics model is computer model to simulate the consequence of interactions between the earth and human systems based on the World3 model by the work of Club of Rome, The Limits to Growth[1].

The World3 model builds by system dynamics theory that is has an approach to understanding the nonlinear behaviour of complex systems over time using stocks, flows, feedback loops, table functions and time delays.

The Limits to Growth concludes that, without substantial changes in resource consumption, "the most probable result will be a rather sudden and uncontrollable decline in both population and industrial capacity". 

Since the World3 model was originally created, it has had minor tweaks to get to the World3-91 model used in the book Beyond the Limits[2], later improved to get the World3-03 model used in the book Limits to Growth: the 30 year update[3].

References;
[1] Meadows, Donella H., Meadows, Dennis L., Randers, Jørgen., Behrens III, William W (1972). The Limits to Growth. 

[2] Meadows, Donella H., Dennis L. Meadows, Randers, Jørgen., (1992). Beyond the limits: global collapse or a sustainable future.

[3] Meadows, Dennis., Randers, Jørgen., (2004). The limits to growth: the 30-year update.
47 7 months ago
   Overview     This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and fi

Overview 

This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and find out the optimal point for coexistence to help improve Tasmania’s economy. 

 

How the model works 

It is recognized that the mountain biking and forestry industries can help support the Tasmanian community and strengthen the Tasmanian economy. The logging and forest sector in Derby can help the local community generate wealth and create more employment opportunities. The sector main source of income come from selling timber such as domestic and export sales. Nevertheless, the sector’s profit has decreased over the past few years on account of the weaker demand and reduced output. Accordingly, the profitability and output of the sector have fluctuated in response to the availability of timber, the timber price movements as well as the impact of changing demand conditions in downstream timber processing sectors. The slow growth rate for a timber has a negative impact on the profitability of the forestry industry and the economic contribution of this industry is set to grow slower, as there is a positive correlation between these variables. In addition, the mountain biking industry in Derby can bring a huge significant economic contribution to the local community. The revenue streams of the industry come from bike rental, accommodation, retail purchase and meals and beverages. These variables also influence the past experience which is positive correlation between reviews and satisfaction that can impact the demand for the mountain biking trails. More importantly, the low regeneration rate for a timber can have a negative impact on the landscape of the mountain biking and the tourist’s past experience that led to a decrease in the demand of tourists for the mountain biking, as the reviews and satisfaction are dependent on the landscape and past experience. It is evident that the industry not only helps the local community generate wealth through industry value addition but also creates a lot of employment opportunities. Therefore, the Mountain Bike Trails can be regarded as sustainable tourism that can help increase employment opportunities and economic contribution that can be of main economic significance to the Tasmania’s economy. Therefore, both industries can co-exist that can maximise the economic contribution to the local community and the Tasmanian economy.


Interesting Insights

It is interesting to note that the activity of cutting down trees does not influence the development of Mountain Biking industry. By lowering the prices of accommodation, food, bike rental and souvenirs, it can help increase the reviews and recommendations of Mountain Biking that will enhance the number of tourists. In this case, the Mountain Biking industry can achieve sustainable economic growth in the long-term while the economic growth rate of forestry industry will continue to decrease. 


WIP replication of Khalid Saeed's draft paper presented by the Economics chapter of the SD Society in Sept 2019  youtube video
WIP replication of Khalid Saeed's draft paper presented by the Economics chapter of the SD Society in Sept 2019 youtube video
  This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.     This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at
This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.

This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at the area. These policy can indirectly affect the local economy in many different way. At the same time, strict policy may be essential for combating Covid-19.

From the simulation of the model, we can clearly see that the economy of Burine will be steady increase when government successfully reduces the COVID-19 cased and make it spreading slower.

Interesting finding: In this pandemic, the testing rate and the recovery rate are important to stop Covid-19 spreading. Once the cases of Covid-19 less than 10, the government might stop intervention and the economy of Burnie will back to normal.

Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Eastern oyster growth model calibrated for Long Island Sound Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This
Eastern oyster growth model calibrated for Long Island Sound
Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This model is a workbench for combining ecological and economic components for REServ. Economic component added by Trina Wellman.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
 WIP of Rammelt's 2019 System Dynamics Review  Article  which has STELLA and Minsky software versions as supplements. Compare with the  older IM-2011  version

WIP of Rammelt's 2019 System Dynamics Review Article which has STELLA and Minsky software versions as supplements. Compare with the older IM-2011 version