Insight diagram

Overview 

This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and find out the optimal point for coexistence to help improve Tasmania’s economy. 

 

How the model works 

It is recognized that the mountain biking and forestry industries can help support the Tasmanian community and strengthen the Tasmanian economy. The logging and forest sector in Derby can help the local community generate wealth and create more employment opportunities. The sector main source of income come from selling timber such as domestic and export sales. Nevertheless, the sector’s profit has decreased over the past few years on account of the weaker demand and reduced output. Accordingly, the profitability and output of the sector have fluctuated in response to the availability of timber, the timber price movements as well as the impact of changing demand conditions in downstream timber processing sectors. The slow growth rate for a timber has a negative impact on the profitability of the forestry industry and the economic contribution of this industry is set to grow slower, as there is a positive correlation between these variables. In addition, the mountain biking industry in Derby can bring a huge significant economic contribution to the local community. The revenue streams of the industry come from bike rental, accommodation, retail purchase and meals and beverages. These variables also influence the past experience which is positive correlation between reviews and satisfaction that can impact the demand for the mountain biking trails. More importantly, the low regeneration rate for a timber can have a negative impact on the landscape of the mountain biking and the tourist’s past experience that led to a decrease in the demand of tourists for the mountain biking, as the reviews and satisfaction are dependent on the landscape and past experience. It is evident that the industry not only helps the local community generate wealth through industry value addition but also creates a lot of employment opportunities. Therefore, the Mountain Bike Trails can be regarded as sustainable tourism that can help increase employment opportunities and economic contribution that can be of main economic significance to the Tasmania’s economy. Therefore, both industries can co-exist that can maximise the economic contribution to the local community and the Tasmanian economy.


Interesting Insights

It is interesting to note that the activity of cutting down trees does not influence the development of Mountain Biking industry. By lowering the prices of accommodation, food, bike rental and souvenirs, it can help increase the reviews and recommendations of Mountain Biking that will enhance the number of tourists. In this case, the Mountain Biking industry can achieve sustainable economic growth in the long-term while the economic growth rate of forestry industry will continue to decrease. 


Simulation of Derby Mountain bikes versus logging
Insight diagram
Based on the Market and Price simulation model in System Zoo 3.
I wrote an explanation of the model which you can find here: https://docs.google.com/document/d/1yRTtZvOOrFiBlK6pkvbpSUv_ajvGMKSAbfthRTBPU-8/edit?usp=sharing 
Z504 Market and Price - System Zoo 3
Insight diagram
Eastern oyster growth model calibrated for Long Island Sound
Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This model is a workbench for combining ecological and economic components for REServ. Economic component added by Trina Wellman.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
REServ Eastern oyster ecology and economics Long Island Sound
Insight diagram
Pathways Causal Loop - Family connections
Insight diagram
Insight Stage 4 Dress Rehearsal Economy and Fossil Fuels
Insight diagram

Based on G.P. Cimellaro et al. Framework for analytical quantification of disaster resilience Engineering Structures 32 (2010) 3639–3649 paper

Facilities Disaster Resilience
Insight diagram
Tragedy of the Commons Climate Change
Insight diagram
​BACKGROUND:

The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015. 

AXIS:

X-Axis
The X-Axis shows the time. It begins in 2015 in the month of October and continues for 36 consecutive years. 

Y-Axis
There are 2 Y-Axis on this model. The left hand side relates to the price, demand, and supply, while the right hand side solely lists the population.

As you could see, this town has a population of 100,000 residents to-date. The bottom of the model shows a population loop that produces an exponential growth rate of 2.5%. This dynamic and growing city populates approximately 240,000 residents after 36 years.

MODEL

The model consists of 2 folders named: Buyers/Consumers & Suppliers/Producers. This first folder represents the 'Demand'. It includes a buyers growth rate, buyers interest increase and decrease, a price demand and the demand price. The formulas form an exponential rise in demand due to the rapid and continuous increase in population in this new city. As population increases, so does the demand from buyers. 

The second folder conveys the supply of houses. It includes a sophisticated loop of real estate. Residents who own houses in the market decide to sell the home. This becomes the Houses for sale, also known as the 'supply'. Those houses are sold and the sold houses re-enter the market and the loop continues. 

The supply has an inverse relationship with the price. When prices drop, supplies drop because the demand goes up. And when the price goes up, so does the supply. This will represent the growth of new houses in the market. 

PRICE

Note: The price is based on monthly rent rates.

The price is dependant on many variables. Most importantly, the supply and demand. It also includes factors such as expectations & the economic value of the house. I have included a stable, 'good' economic value for all homes as this fictional town is in a stable and growing area.

Price fluctuates throughout the entire simulation, however it also goes up in price. Over the years houses continue to rise in price while they regularly fluctuate. For example, in 2018 (3 years later), the max price for a home was: $4254.7 and min price was: $852.98. On the other hand, in October 2051 (36 years later), the max price was: $14906 and the min price was: $7661. (This is based on the following data: Houses for Sale: 500, Houses that have sold: 100, Houses in the Market: 730).

SLIDERS

There are 3 sliders on the bottom that could be altered. The simulation would react accordingly. The 3 sliders include changeable data on:
- Houses for Sale.
- Houses that have Sold.
- Houses in the Market.


Real Estate Simulation Assignment - Mitchell Bassil 43290264
Insight diagram
Students and Educational Institutions
3 9 months ago
Insight diagram

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


COVID-19 Outbreak in Burnie Tasmania (Rajaa Sajjad, 538837)
Insight diagram

Cutbacks can have a counterintuitive effect. The government knows precisely how much it custs in spending. However, it cannot know the extent to which tax revenues shrink in a non-linear complex economic system as the economy contracts. In addition, the treasury has to spend more as automatic stabilizers activate and payments are made to an increasing number of unemployed workers. The effect of this is that initially the deficit shrinks, but later it rises as tax revenues fall short of expectations and more spending takes place. The ironic part is that often the very indicator that promted austerity measurs, the defcit to GDP ratio, becomes worse than it was at the outset. We could observe this in Spain and Portugal where planned deficits have been repeatedly missed, as austerity measures  (fiscal cutbacks) were introduced to deal with the effects of  the 2008 financial crisis.

CUTBACKS OFTEN MAKE FISCAL DEFICITS WORSE
Insight diagram
Any activity  requires the use of energy. Economic activity is not possible without energy,  especially fossil fuels. An increase in economic activity necessarily leads to an increase in the use  fossil fuels and greenhouse gas emissions. In addition there will   be a commensurate increase in waste products, pollution and heat. This is dictated by the laws of physics and unavoidable.  A problem arise when the cost of this degeneration caused by continual economic growth surpasses the benefit society derives from it. The ecological economist Professor Herman Daly (2014) explained that when the impact on the ecosystem is correctly measured, global growth has reached a point where the total private and social costs of economic growth outweigh the private and social benefits. In other words, more economic growth is making global society worse off overall - growth has become uneconomic! The model shows that eventually pressures will build up that counteract the perennial belief that all social ills can be solved with economic growth. 

The dynamic of UNECONOMIC growth
Insight diagram
COVID Systemigram
Insight diagram
VA - socio-economic
Insight diagram

WIP of Rammelt's 2019 System Dynamics Review Article which has STELLA and Minsky software versions as supplements. Compare with the older IM-2011 version

Simplified Keen Goodwin Minsky Financial Instability model
Insight diagram
Tesla pestel Analysis
Tesla pestel
Insight diagram
Economics Fast Fashion
12 3 months ago
Insight diagram
Black Friday
Insight diagram
• This model examines how sustainable consumerism is from social, economic, and environmental aspects. The question in focus is "How will our second-hand clothing donations affect communities in developing countries, specifically Kenya?"

5 Stock Variables: 
• U.S. Consumers
• Multinational Corporations
• Overseas Factories
• Kenya

Highlight Findings: 
To sum up, there are 4 major problems associated to donations:
• 1. Source of problem is the consumer: Cheap deals attract hundreds of millions in revenue for fast fashion, and contribute to 100,000 tonnes of clothing to Kenya annually. 
• 2. Rapid consumerism leads to over-utilization of slowly-renewable resources, such as water.
• 3. Nearly 96% of textiles jobs are eradicated by the massive inflow of clothing donations to Kenya. 
• 4. The offshoring of textiles jobs enrages U.S. blue-collar workers, leading to the rise of protectionism.  



The environmental, social, and economic sustainability aspects of textiles donations
Insight diagram
Summary WIP of Thomas Palley's 2012 Book
From Financial Crisis to Stagnation
Insight diagram

Model description:

This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.

 

Variables:

The simulation takes into account the following variables and its adjusting range: 

 

On the left of the model, the variables are: infection rate( from 0 to 0.25), recovery rate( from 0 to 1), death rate( from 0 to 1), immunity loss rate( from 0 to 1), test rate ( from 0 to 1), which are related to Covid-19.

 

In the middle of the model, the variables are: social distancing( from 0 to 0.018), lock down( from 0 to 0.015), quarantine( from 0 to 0.015), vaccination promotion( from 0 to 0.019), border restriction( from 0 to 0.03), which are related to governmental policies.

 

On the right of the model, the variables are: economic growth rate( from 0 to 0.3), which are related to economic growth.

 

Assumptions:

(1) The model is influenced by various variables and can produce different results. The following values based on the estimation, which differ from actual values in reality.

 

(2) Here are just five government policies that have had an impact on infection rates in epidemic models. On the other hand, these policies will also have an impact on economic growth, which may be positive or negative.

 

(3) Governmental policy will only be applied when reported cases are 10 or more. 

 

(4) This model lists two typical economic activities, namely e-commerce and physical stores. Government policies affect these two types of economic activity separately. They together with economic growth rate have an impact on economic growth.

 

Enlightening insights:

(1) In the first two weeks, the number of susceptible people will be significantly reduced due to the high infection rate, and low recovery rate as well as government policies. The number of susceptible people fall slightly two weeks later. Almost all declines have a fluctuating downward trend.

 

(2) Government policies have clearly controlled the number of deaths, suspected cases and COVID-19 cases.

 

(3) The government's restrictive policies had a negative impact on economic growth, but e-commerce economy, physical stores and economic growth rate all played a positive role in economic growth, which enabled the economy to stay in a relatively stable state during the epidemic.

Model of COVID-19 Outbreak in Burnie, Tasmania
Insight diagram
algae-fish
Insight diagram
About the Model 
This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.

This model is based on SIR model, which explains the dynamic reflection between the people who were susceptible, infected,deaths and recovered. 

Assumptions 
This model assumes that when the Covid-19 positive is equal or bigger than 10, the government policy can be triggered. This model assumes that the shopping rate in retail shops and the dining rates in the restaurants can only be influenced by the government policy.

Interesting Insights  

The government police can have negative influence on the infection process, as it reduced the possibility of people get infected in the public environments. The government policy has a negative effect on shopping rate in retail shops and the dining rate in the restaurants. 

However, the government policy would cause negative influence on economy. As people can not  shopping as normal they did, and they can not dinning in the restaurants. The retail selling growth rate and restaurant revenue growth rate would be reduced, and the economic situation would go worse. 
Corona virus outbreak in Burnie Tasmania (Xuexiao Zhang 538712)