Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
3 2 days ago
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Investigations into the relationships responsible for the success and failure of nations. This investigation was prompted after reading numerous references on the subject and perceiving that *Why Nations Fail: The Origins of Power, Prosperity, and Poverty* by Acemoglu and Robinson seem to make a gre
Investigations into the relationships responsible for the success and failure of nations. This investigation was prompted after reading numerous references on the subject and perceiving that *Why Nations Fail: The Origins of Power, Prosperity, and Poverty* by Acemoglu and Robinson seem to make a great deal of sense.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
6 2 days ago
 About the Model   This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.   This model is based on SIR model, which explains the dynamic reflection between the people who were
About the Model 
This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.

This model is based on SIR model, which explains the dynamic reflection between the people who were susceptible, infected,deaths and recovered. 

Assumptions 
This model assumes that when the Covid-19 positive is equal or bigger than 10, the government policy can be triggered. This model assumes that the shopping rate in retail shops and the dining rates in the restaurants can only be influenced by the government policy.

Interesting Insights  

The government police can have negative influence on the infection process, as it reduced the possibility of people get infected in the public environments. The government policy has a negative effect on shopping rate in retail shops and the dining rate in the restaurants. 

However, the government policy would cause negative influence on economy. As people can not  shopping as normal they did, and they can not dinning in the restaurants. The retail selling growth rate and restaurant revenue growth rate would be reduced, and the economic situation would go worse. 
Structure of model in Nathan Forrester's 1983 MIT Thesis comprising 4 models
Structure of model in Nathan Forrester's 1983 MIT Thesis comprising 4 models
I have tried to capture the unemployment benefits budget in a causal loop diagram. You can make this as extensive as you want, but I have tried to focus on how unemployment benefits are financed and on the main determinants of expenditures and income. I was not (yet) able to 'close te loop' - to bui
I have tried to capture the unemployment benefits budget in a causal loop diagram. You can make this as extensive as you want, but I have tried to focus on how unemployment benefits are financed and on the main determinants of expenditures and income. I was not (yet) able to 'close te loop' - to build the diagram up from feedback cycles. 
The diagram is in Dutch.
 ​BACKGROUND:    The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015.      AXIS:          X-Axis  The X-Axis shows the time.
​BACKGROUND:

The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015. 

AXIS:

X-Axis
The X-Axis shows the time. It begins in 2015 in the month of October and continues for 36 consecutive years. 

Y-Axis
There are 2 Y-Axis on this model. The left hand side relates to the price, demand, and supply, while the right hand side solely lists the population.

As you could see, this town has a population of 100,000 residents to-date. The bottom of the model shows a population loop that produces an exponential growth rate of 2.5%. This dynamic and growing city populates approximately 240,000 residents after 36 years.

MODEL

The model consists of 2 folders named: Buyers/Consumers & Suppliers/Producers. This first folder represents the 'Demand'. It includes a buyers growth rate, buyers interest increase and decrease, a price demand and the demand price. The formulas form an exponential rise in demand due to the rapid and continuous increase in population in this new city. As population increases, so does the demand from buyers. 

The second folder conveys the supply of houses. It includes a sophisticated loop of real estate. Residents who own houses in the market decide to sell the home. This becomes the Houses for sale, also known as the 'supply'. Those houses are sold and the sold houses re-enter the market and the loop continues. 

The supply has an inverse relationship with the price. When prices drop, supplies drop because the demand goes up. And when the price goes up, so does the supply. This will represent the growth of new houses in the market. 

PRICE

Note: The price is based on monthly rent rates.

The price is dependant on many variables. Most importantly, the supply and demand. It also includes factors such as expectations & the economic value of the house. I have included a stable, 'good' economic value for all homes as this fictional town is in a stable and growing area.

Price fluctuates throughout the entire simulation, however it also goes up in price. Over the years houses continue to rise in price while they regularly fluctuate. For example, in 2018 (3 years later), the max price for a home was: $4254.7 and min price was: $852.98. On the other hand, in October 2051 (36 years later), the max price was: $14906 and the min price was: $7661. (This is based on the following data: Houses for Sale: 500, Houses that have sold: 100, Houses in the Market: 730).

SLIDERS

There are 3 sliders on the bottom that could be altered. The simulation would react accordingly. The 3 sliders include changeable data on:
- Houses for Sale.
- Houses that have Sold.
- Houses in the Market.


Implementation of a DSGE Model solved in a Macroeconomics class by Harald Uhlig ( link ), using Rational Expectations, in this case, the Hansens Real Business Cycle Model. It shows the capacity of implementing Dynamic Stochastic General Equilibrium Model Analysis using System Dynamics.
Implementation of a DSGE Model solved in a Macroeconomics class by Harald Uhlig (link), using Rational Expectations, in this case, the Hansens Real Business Cycle Model.
It shows the capacity of implementing Dynamic Stochastic General Equilibrium Model Analysis using System Dynamics.
WIP Summary of Miller 2015 PCD  article  for the Compelling Case for Prevention Project Scoping Study. See also economic view  IM 69774  (private)  Simplified at  IM-70351 Tool
WIP Summary of Miller 2015 PCD article for the Compelling Case for Prevention Project Scoping Study.
See also economic view IM 69774 (private)
Simplified at IM-70351 Tool
 Introduction:  This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.      Assumptions:   This model has four variables that influence the number of COVID-19 cases: infecti
Introduction:
This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.

Assumptions:
This model has four variables that influence the number of COVID-19 cases: infection rate, immunity loss rate, recovery rate and death rate.

In order to reduce the pandemic spread, in this model, assume the government released six policies when Burnie COVID-19 cases are equal or over 10 cases. Policies are vaccination promotion, travel restriction to Burnie, quarantine, social distance, lockdown and testing rate.

Government policies would reduce the pandemic. However, it decreases economic growth at the same time. In this model, only list three variable that influence local economic activities. 
Travel restrictions and quarantine will reduce Burnie tourism and decrease the local economy. On the other hand, quarantine, social distance, lockdown allow people to stay at home, increasing E-commerce business.
As a result, policies that cause fewer COVID-19 cases also cause more considerable negative damage to the economy.

Interesting insights:
One of the interesting findings is that the government policy would reduce the COVID-19 spread significantly if I adjust the total government policies are over 20% (vaccine promotion, travel restriction, quarantine, social distance, lockdown), 3560 people will die, then no more people get COVID-19.
However, if I change the total government policy to less than 5%, the whole Burnie people will die according to the model. Therefore, we need to follow the polices, which saves our lives.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy, though, of higher detected cases is negative. 




39 4 months ago
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent. According to Micheal Finke, house prices typically run 20x monthly rental rates.      Try cloning this insight, setting the parameter values for real-world s
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent. According to Micheal Finke, house prices typically run 20x monthly rental rates. 

Try cloning this insight, setting the parameter values for real-world scenarios, and then running sensitivity analysis (see tools) to determine the likely wealth outcomes. Compare buying a home to renting. Note that each run will keep the parameters the same while simulating market volatility.

version 1.9
4 2 months ago
  COVID-19 outbreak in Burnie Tasmania Simulation Model         Introduction        This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be
COVID-19 outbreak in Burnie Tasmania Simulation Model

Introduction

This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be based on testing rate times number of people who are infected minus those recovered from COVID-19 and dead.
Government interventions include the implement of healthy policy, border surveillance, quarantine and travel restriction. After outbreak, economic activities are positively affected by the ecommerce channel development and normal economic grwoth, while the unemployement rate unfortunately increases as well. 

Assumption
  • Enforcing government policies reduce both infection and economica growth.                                                                                                         
  • When there are 10 or greater COVID-19 cases reported, the governmwnt policies are triggered.                                                          
  • Greater COVID-19 cases have negatively influenced the economic activities.                                                                                             
  • Government policies restict people's activities socially and economically, leading to negative effects on economy.                                          
  • Opportunities for jobs are cut down too, making umemployment rate increased.                                                                                   
  • During the outbreak period, ecommerce has increased accordingly because people are restricted from going out.                                  
Interesting insights

An increase in vaccination rate will make difference on reduing the infection. People who get vaccinated are seen to have higher immunity index to fight with COVID-19. Further research is needed.

Testing rate is considered as critical issue to reflect the necessity of government intervention. Higher testing rate seems to boost immediate intervention. Reinforced policies can then reduce the spread of coronvirus but absoluately have negative impacts on economy too.