Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).
A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Data from two rounds of using Disease Participatory Simulation in class. Participants + Androids = 39. By adjusting Rate Constant, stocks and flows representation can be used to match data from either Trial 1 or Trial 2. An example of matching Trial 1 is shown when this simulation is run. Graph of "Area" (Well * Sick) has the same shape as Rate Catching graph. The Rate Catching graph is much smaller because the Well * Sick values are multiplied by a small constant that is the Rate Constant.
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).