Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

# Ecology

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

• 2 years 6 months ago

#### Clone of Spring and fall bloom

Introduction
Simple model of the spring bloom in coastal temperate coastal waters. Nitrogen is assumed to be the limiting nutrient, so the model is based on N only. The model represents one liter of water. Dissolved inorganic nitrogen (DIN) accumulates in the water column during winter and has reached 250 µmol/L on March 1st where the model starts. At this time the light intensity have just reached the level necessary to initiate the bloom.

Model setup
N uptake: Michaelis Menten kinetics with a maximum growth rate that doubles the population each day. Km=5µM.

Grazing: Michaelis Menten kinetics with a maximum daily uptake equal to the N in the population. Km=50µM.

Sloppy eating: 60% of the grazing is wasted to PON

Death: 5% of the zooplankton dies each day

Mineralization: 1% of the PON is mineralized to DIN each day

Results
For the first 6 days the phytoplankton grows exponentially and depletes the DIN pool. The peak in phytoplankton is followed by a delayed peak in zooplankton due to its slower growth rate. Slowly the zooplankton graze down the spring bloom and the nitrogen is transformed to the pool of particulate dead organic nitrogen (PON). While this happens the phytoplankton is kept low by the still high zooplankton which allow the DIN pool to increase from day 25 to day 55. Eventually the phytoplankton escapes the top down control and we see a secondary bloom based on regenerated DIN.
• 4 years 8 months ago

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

• 2 years 6 months ago

#### Clone of Isle Royale: Predator/Prey Model for Moose and Wolves

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

• 2 years 7 months ago