Rocket Behaviour System
Laura Stable
- 3 years 5 months ago
My first emulation
Jorge A Araujo B
- 3 years 6 months ago
EWClassManagement
LaoPang Wang
- 3 years 6 months ago
Clone of Clone of Startup University Model
Javier Ignacio Londoño Ochoa
Education University Health Care Performance Workforce Organization
- 4 years 5 months ago
Student Success Model
Michael Schoop
- 1 year 3 months ago
Liberal Arts
Abhinav Banerjee
- 3 years 8 months ago
MAT375 Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")
Andrew E Long
Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")
Tags: Education, Chaos, Ecology, Biology, PopulationThanks to Insight Author: John Petersen
Edits by Andy Long
Everything that follows the dashes was created by John Petersen (or at least came from his Insight model). I just wanted to make a few comments.
We are looking at Hare and Lynx, of course. Clone this insight, and change the names.
Then read the text below, to get acquainted with one of the most important and well-known examples of a simple system of differential equations in all of mathematics.
http://www.nku.edu/~longa/classes/mat375/mathematica/Lotka-Volterra.nb------------------------------------------------------------
Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.
For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.
The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.
Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.
Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:
1. The prey population finds ample food at all times.2. The food supply of the predator population depends entirely on the size of the prey population.3. The rate of change of population is proportional to its size.4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]
Prey
When multiplied out, the prey equation becomesdx/dt = αx - βxy The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
Education Chaos Ecology Biology Population Mat375 Lotka Volterra
- 10 months 1 week ago
Launderette Story Episode 3
Ante Prodan
- 1 year 2 months ago
Classroom
Debbie M Taylor
- 4 years 5 months ago
Clone of Predator-Prey Model ("Lotka'Volterra")
Ethan Lee
Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system. For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system. The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined. Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed. Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:
1. The prey population finds ample food at all times.2. The food supply of the predator population depends entirely on the size of the prey population.3. The rate of change of population is proportional to its size.4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.5. Predators have limitless appetite.As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]
Prey
When multiplied out, the prey equation becomesdx/dt = αx - βxy The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
- 1 year 6 months ago
Clone of BridgingTheGap
Wendy Kay Moran
- 5 years 4 months ago
Classroom Management
Christine Adams
- 4 years 1 month ago
Clone of Balancing an Inverted Pendulum
Ciro
Z209 from Hartmut Bossel's System Zoo 1 p112-118
- 6 years 7 months ago
Classroom Management
Sandra Gardner
- 4 years 3 months ago
Tutorial Insight
Brandon Sum
- 1 year 12 months ago
Clone of Population Stock and Flow
Alena Peskova
The birth fraction and life expectancy are variables and are set as per page 66 of the text. The population is the stock and the births and deaths are the flows.
- 5 years 7 months ago
Clone of Higher Learning
Josh Hawley
Education University Learning Organization Performance Inquiry Methods
- 3 years 1 week ago
Clone of Clone of Student Learning
Matthew Simpson
- 5 years 6 hours ago
Clone of Balancing an Inverted Pendulum PCT Model
Juan Antonio Jaramillo Zapata
Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118
- 4 years 8 months ago
Clone of Rotating Pendulum
Alicus viorel
Rotating Pendulum Z201 from System Zoo 1 p80-83
- 7 years 8 months ago
Clone of Predator-Prey Model ("Lotka'Volterra")
james gallagher
Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system. For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system. The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined. Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed. Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:
1. The prey population finds ample food at all times.2. The food supply of the predator population depends entirely on the size of the prey population.3. The rate of change of population is proportional to its size.4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.5. Predators have limitless appetite.As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]
Prey
When multiplied out, the prey equation becomesdx/dt = αx - βxy The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
- 2 years 11 months ago
Causal model for Faculty Trust
Lesley Ray
- 4 years 2 months ago
21st century biologist training
Jeff Klemens
- 3 years 7 months ago
Clone of S-Curve + Delay for Bell Curve by Guy Lakeman
Ray Madachy
Generation of Bell Curve from Initial Market through Delay in Pickup of Customers
This provides the beginning of an Erlang distribution model
The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:
- a positive integer 'shape'
- a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.
MATHS Statistics Physics Science Ecology Climate Weather Intelligence Education Probability Density Function Normal Bell Curve Gaussian Distribution Democracy Voting Politics Policy Erlang
- 1 year 10 months ago