#### Business 101 (Hello, world!)

##### Kripa Rajshekhar

All to illustrate how easy it is to make/lose money.

- 3 weeks 1 day ago

#### Sistem investasi melalui EQF

##### Ghulam Ihsani Muflih Nahari

Pemodelan simulasi ini merupakan sistem investasi melalui platform Equity CrowdFunding

Model ini mampu mengukur investasi yang dilakukan oleh investor dengan persentase kepemilikan saham 51% dan 49% yang menghasilkan profit dengan nilai 0-10% dari modal yang terkumpul dengan pengaruh pasar, pembagian dividen antara penerbit startup, investor dan equity crowdfunding tersebut hingga ketiga pelaku ekonomi dalam pemodelan sistem ini mendapatkan keuntungan.

- 5 months 2 weeks ago

#### Balance and Interest

##### vicente chavez

- 4 years 1 week ago

#### JLuks - Sporici ucet

##### Jonas Luks

- 4 years 2 months ago

#### Spareinlagensimulation

##### Some One

Hier werden Spareinlagen in Abhängigkeit von einstellbaren Ausgaben und einem geregelten Einkommen sowie Investitionen simuliert.

- 1 year 2 months ago

#### Konto

##### Ayuzawa Misaki

- 5 years 4 months ago

#### Clone of TBS API-KDE INFO&DECISION

##### Kévin DECKER

At the dawn of our century financials markets collapsed in what is call “the burst of the internet bubble”. There are many things which can explain this bursting and before that, the emergence of the bubble. In this document we will try to show what this factors are and how they are related each other.

- 3 years 3 months ago

#### Comércio de Leite

##### Allan Henriques Teixeira Albuq...

- 4 years 6 months ago

#### Stock-Flow Diagram - Compound Interest - Negative interest

##### Henny van Dongen

- 4 months 2 weeks ago

#### Food Web

##### Jason Clemente

- 4 years 4 months ago

#### Untitled Insight

##### Thule

- 1 week 17 hours ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Teresa Nani

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 4 years 12 months ago

#### Maintenance Annual Cost Growth

##### Luke Geise

- 1 year 8 months ago

#### Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

##### Guilherme Werpel Fernandes

F(t) = 1 - e ^ -λt Where • F(t) is the probability of failure • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

**Early Life**If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

**Useful Life**

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

**Wearout**

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Failure Strategy

- 4 years 11 months ago

#### Stock-Flow diagram of savings account

##### Henny van Dongen

- 6 months 15 hours ago

#### Funds Flow

##### Jose Vaisman

- 2 years 1 month ago

#### Producción de alimentos

##### Jose Eduardo Barragán Acevedo

- 3 years 9 months ago

#### Clone of Aufgabe 3: Lancierung Produktpakete / Stock-Flow Modell / Jan Mathieu & Martin Bovet

##### Peter Addor ★

Dieses Modell soll aufzeigen, wie sich ein neues Produkt auf das Kundenverhalten auswirkt. Vorteil von Paketen für z.B. eine Bank ist es, dass die Kunden egal welche Produkte sie haben, immer gleich viel bezahlen und somit die Kosten einfacher Berechnet werden können.

Im Weiteren ist die Administration von einem standarisierten Paket einfacher und günstiger, als die Administration der einzelnen Produkte.

Im Modell kann berechnet werden, wie sich die Attraktivität des Paketes gegenüber den Einzelprodukten (in diesem einfachen Modell nur über den Preis definiert) auf das Wechselverhalten der Kunden auswirkt.

- 6 years 6 months ago

#### Clone of OVERSHOOT GROWTH INTO TURBULENCE

##### Gary Leonard

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth Strategy Weather

- 5 years 5 months ago

#### Poupança

##### Regis Laviola

- 4 years 6 months ago

#### Clone of Hyperinflation Simulation

##### Vincent Cate

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings. We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.

- 1 year 7 months ago

#### Salario

##### Kaike Alves

- 4 months 1 week ago

#### Pemodelan sistem ekonomi Marketplace

##### Ghulam Ihsani Muflih Nahari

**Deskripsi Model Simulasi :**

Model simulasi ini menggambarkan sistem ekonomi Marketplace, dimana terdiri dari consumer, E-wallet, dan penjual dengan aliran uang dalam jumlah tertentu dan waktu tertentu. Kurva menunjukan kenaikan dana dengan stabil karena dana pendapatan lebih besar dari dana yang dikeluarkan, ditambah dengan dana modal awal yang tersedia pada Marketplace tersebut.

- 5 months 4 weeks ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Sipos Ágnes

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 4 years 9 months ago