FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
  Format: Given  pre-conditions  when  independent variables(s)  then  dependent variable         Given  Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12))  when  one of these independent variables change  then  how   sensitive   is
Format: Given pre-conditions when independent variables(s) then dependent variable

Given Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12)) when one of these independent variables change then how sensitive is Investment (22) over a 30 year time period (-1,000)

H1: if you Earn more then Investment will last much longer => rejected

H2: if you Spend less then Investment will last much longer => accepted

H3: if your Initial Investment is higher then Investment will last much longer => accepted

H4: if you reduce your Spend when Investments are declining then Investment will last much longer => accepted

Given Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12)) when one of these independent variables are optimised then Investment will last exactly 30 years by minimising the absolute investment gap

H1: if you set an appropriate Spending Base then remaining Investment is 0 => rejected

H2: if you set an appropriate Spending Reduction then remaining Investment is 0 => rejected

Source for investment returns: https://seekingalpha.com/article/3896226-90-year-history-of-capital-market-returns-and-risks
Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
Modern
Monetary theory (MMT) has shown how modern monetary systems actually work. It
has shown  that governments that issue
their own currency, such as the US, can never run out of money or be forced to
default on debt issued in their own currency. It has also demonstrated that
government spending t
Modern Monetary theory (MMT) has shown how modern monetary systems actually work. It has shown  that governments that issue their own currency, such as the US, can never run out of money or be forced to default on debt issued in their own currency. It has also demonstrated that government spending to stimulate the economy is logical and that the resulting deficit is irrelevant - the government always has the monetary means to eliminate it. This directly contradicts neoliberal doctrine that wants to limit government spending and posits that deficits destabilize the economy. Neoliberalism often constitutes a 'worldview' and 'personal identity'. Those who hold such strong beliefs cannot be persuaded to abandon them using rational arguments and facts - psychological reasons usually impede it as research has shown. The worldwide dominance of the doctrine, vested interests and psychologically grounded opposition suffocate MMT and rational arguments showing its superiority are seemingly of no avail. 

Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Very basic stock-flow diagram of compound interest with table and graph output in interest and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal can all be modified.
Very basic stock-flow diagram of compound interest with table and graph output in interest and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal can all be modified.
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
This is an insight about food-born pathogens and what factors are affected by it's outbreaks. This is a huge issue that is not very well-known. The pathogens in food has been increasing their resistance to antibiotics by mutations. Because we are generally using antibiotics more each day, the resist
This is an insight about food-born pathogens and what factors are affected by it's outbreaks. This is a huge issue that is not very well-known. The pathogens in food has been increasing their resistance to antibiotics by mutations. Because we are generally using antibiotics more each day, the resistance in these pathogens is growing more rapidly then it did before.
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)