Insight diagram
to be updated
Campaign effectiveness
Insight diagram
Updated/Improved Grocery Store System - Stock & Flow Diagram
Insight diagram
20170308 My money
Insight diagram
This is an insight about food-born pathogens and what factors are affected by it's outbreaks. This is a huge issue that is not very well-known. The pathogens in food has been increasing their resistance to antibiotics by mutations. Because we are generally using antibiotics more each day, the resistance in these pathogens is growing more rapidly then it did before.
Food-born pathogen outbreaks
Insight diagram
Very basic stock-flow diagram of compound interest with table and graph output in interest and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal can all be modified.
Stock-Flow diagram of savings account
Insight diagram
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
Clone of Hyperinflation Simulation
Insight diagram
Clone of Grocery Store System - CLD to Stock & Flow Presentation
Insight diagram
Clone of Grocery Store System - Stock & Flow Diagram
Insight diagram
Trial 10 - Grocery System
Insight diagram
Improved/Updated Grocery Store System - CLD to Stock & Flow Presentation
Insight diagram
Czech startUp company model
Insight diagram
Models the repayment of a mortgage, with a fixed-term fixed-rate deal.

e.g. for an up-front £1495 fee, you get a fixed interest rate of 1.22% for 2 years, followed by variable rate).

After the deal ends, the 'variable' rate is currently constant, but could be set via a converter instead to model different predictions of future interest rates. 
Fixed rate mortgage deal model
Insight diagram
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)
Insight diagram
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Clone of Oil Price Influencers (3-Loop)
Insight diagram
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Clone of Oil Price Influencers (3-Loop)
Insight diagram
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
Clone of Hyperinflation Simulation
Insight diagram
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Clone of Clone of Oil Price Influencers (3-Loop)
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
From Business Dynamics by John Sterman

Only a sketch to show someone a quick demo of an SD model – I'll probably never finish this as it leaves too many relationships unspecified
General Motors leasing policy
Insight diagram
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)
Insight diagram
Nastiňuje vlivy financí a školních výsledků na školáka
Finance a spokojenost školáka verze 3
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of Clone of Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
Clone of Hyperinflation Simulation
Insight diagram
Clone of Grocery Store System - Stock & Flow Diagram