#### TBS API-KDE INFO&DECISION

##### Piccin Aymeric

At the dawn of our century financials markets collapsed in what is call “the burst of the internet bubble”. There are many things which can explain this bursting and before that, the emergence of the bubble. In this document we will try to show what this factors are and how they are related each other.

- 3 years 3 months ago

#### Test Project

##### Ariovistus

- 5 years 9 months ago

#### MicroFinance Cashflows prediction

##### Olga Konoval

- 3 years 10 months ago

#### model-PD

##### Aaron Medlin

- 2 months 2 weeks ago

#### Finance a spokojenost školáka verze 3

##### Tomáš Novák

- 4 years 2 weeks ago

#### Economic Systems Thinking

##### Richard Turnock

- 6 years 1 month ago

#### Lottery Jackpot

##### Serdar Benderli

- 6 years 7 months ago

#### OSA - 2cv školství vs. praxe

##### Jiri Ctrnacty

- 4 years 3 months ago

#### Outside financial services

##### Matthew Graham

- 2 years 6 months ago

#### HomeLoan

##### Ante Prodan

- 4 months 2 weeks ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Shrishail

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 8 years 2 months ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Arash

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 8 years 3 months ago

#### MME_Eusebio_Wyder

##### Antonio Eusebio

- 5 years 4 months ago

#### Current State - Class Structure & Finance

##### Richard Genet

- 5 years 7 months ago

#### Model-SIM

##### Aaron Medlin

- 2 months 1 week ago

#### Clone of Oil Price Influencers (3-Loop)

##### Pedro Aparicio

- 6 years 4 months ago

#### Campaign effectiveness

##### Chaitanya TSK

- 2 years 3 months ago

#### PV Capacity Growth - Simple

##### Jeffrey Connor

- 5 years 1 month ago

#### Allowance or Money Earned

##### Daniel Pacheco

Php1500 all in all the cost<br>Php2000 the desired or needed money to be able to save<br>Php500 to Php1000 are usually given

- 8 years 6 months ago

#### financial_simulation_practice

##### Phillip Balding

- 1 year 1 day ago

#### Future State - Class Structure & Finance Simplified

##### Richard Genet

- 5 years 7 months ago

#### Δάνειο

##### Giorgos Arampatzis

- 5 years 5 months ago

#### Bob - Expanded

##### Andrew Walker

- 6 years 6 months ago

#### Customer Adoption

##### Luis Casanas

- 5 years 3 months ago