Business Models

These models and simulations have been tagged “Business”.

Related tagsTechnology

A super basic model of a profit driven organization.
A super basic model of a profit driven organization.
 Causal loop diagram unfolding story based on Jack  Homer's  paper  Worker burnout: a dynamic model See  IM-333  for the Simulation model and  IM-2178  for a related Causal Loop Diagram of Project Turnover 
  

Causal loop diagram unfolding story based on Jack  Homer's paper Worker burnout: a dynamic model See IM-333 for the Simulation model and IM-2178 for a related Causal Loop Diagram of Project Turnover

 

last month
 ​This model attempts to understand the behavior of average lifetime of companies in the S&P500 index. The reference mode for the model is a graph available at this link:  https://static-cdn.blinkist.com/ebooks/Blinkracy-Blinkist.pdf  (page 5) which was discussed in the System Thinking World Dis

​This model attempts to understand the behavior of average lifetime of companies in the S&P500 index. The reference mode for the model is a graph available at this link: https://static-cdn.blinkist.com/ebooks/Blinkracy-Blinkist.pdf (page 5) which was discussed in the System Thinking World Discussion forum.

Mergers & Acquisitions can be one of the reasons for older companies to be replaced with newer companies in the Index. With M&A of older companies, the empty slots are taken over by newer companies. However, overtime, these new companies themselves become old. With steady M&A, the stock of older companies decreases and stock of newer companies increases. The result is that average age of the companies in the S&P Index decreases.

The oscillations in the diagram, according to me, is due to oscillations in the M&A activity.

There are two negative feedback loops in the model. (1) As stock of new companies increases, the number of companies getting older increases which in turn decreases the stock. (2) As M&A increases, stock of older companies decreases which in turn decreases M&A activities.

Limits of the model

The model does not consider factors other than M&A in the increase in number of new companies in the Index. New companies themselves may have exceptional performance which will result in their inclusion in the Index. Changes in technology for example Information Technology can usher in new companies.

Assumptions

1. It is assumed that M&A results in addition of new companies to the Index. There could be other older companies too, which given the opportunity, can move into the Index. Emergence of new technologies brings in new companies.

last week
 Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the su
Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the supply chain. The so called classical formula computes safety stock at each node as Safety Stock = Z value of the service level* standard deviation * square root (Lead time). Does it sound complicated? It is not. It is only saying, if you know how much of the variability is there from your average, keep some 'x' times of that variability so that you are well covered. It is just the maths in arriving at it that looks a bit daunting. 

While we all computed safety stock with the above formula and maintained it at each node of the supply chain, the recent theory says, you can do better than that when you see the whole chain holistically. 

Let us say your network is plant->stocking point-> Distributor-> Retailer. You can do the above safety stock computation for 95% service level at each of the nodes (classical way of doing it) or compute it holistically. This simulation is to demonstrate how multi-echelon provides better service level & lower inventory.  The network has only one stocking point/one distributor/one retailer and the same demand & variability propagates up the supply chain. For a mean demand of 100 and standard deviation of 30 and a lead time of 1, the stock at each node works out to be 149 units (cycle stock + safety stock) for a 95% service level. You can start with 149 units at each level as per the classical formula and see the product shortage. Then, reduce the safety stock at the stocking point and the distributor levels to see the impact on the service level. If it does not get impacted, it means, you can actually manage with lesser inventory than your classical calculations. 

That's what your multi-echelon inventory optimization calculations do. They reduce the inventory (compared to classical computations) without impacting your service levels. 

Hint: Try with the safety stocks at distributor (SS_Distributor) and stocking point (SS_Stocking Point) as 149 each. Check the number of stock outs in the simulation. Now, increase the safety stock at the upper node (SS_stocking point) slowly upto 160. Correspondingly keep decreasing the safety stock at the distributor (SS_Distributor). You will see that for the same #stock outs, by increasing a little inventory at the upper node, you can reduce more inventory at the lower node.
last week