Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


Filling a tank with a pump. Tank is straight-walled (constant capacitance). Flow is laminar (linear flow relation).    Energy quantities have been added.
Filling a tank with a pump. Tank is straight-walled (constant capacitance). Flow is laminar (linear flow relation).

Energy quantities have been added.
Charging Electric Vehicles will have an impact in the electricity network infrastructure. What will be the influence at district level?
Charging Electric Vehicles will have an impact in the electricity network infrastructure. What will be the influence at district level?

Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
A natural gas discovery and production model created by MIT student Roger Naill, based n the life cycle theory of oil and gas discovery
 and production put forth by petroleum geologist M. King Hubbert.  Example copied from _Introduction to Systems Dynamics_ by Michael J. Radzicki an Robert A. Taylor
A natural gas discovery and production model created by MIT student Roger Naill, based n the life cycle theory of oil and gas discovery and production put forth by petroleum geologist M. King Hubbert.

Example copied from _Introduction to Systems Dynamics_ by Michael J. Radzicki an Robert A. Taylor.
   THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

11 months ago
To maintain economic wealth (roads, hospitals, power
lines, etc.) power needs to be consumed. The same applies to economic activity,
since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning
of fossil fuels was responsible for 79 percent of
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" value
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Monitor the behavior of energy levels and coffee consumption.
Monitor the behavior of energy levels and coffee consumption.
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


Basic idea is to model demand with endogenous growth (but "satiation" becomes possible - eventually - at some notional "sufficiency" level); and supply then tracks demand with some time lag (~5-50 years - characteristic of commissioning/decommissioning large scale energy infrastructure). Then add cu
Basic idea is to model demand with endogenous growth (but "satiation" becomes possible - eventually - at some notional "sufficiency" level); and supply then tracks demand with some time lag (~5-50 years - characteristic of commissioning/decommissioning large scale energy infrastructure). Then add cumulative pollution, with a hard constraint/limit which trumps demand and forces supply (of any non-zero polluting source) to zero. In the first instance we'll only have one source, and it will be polluting: so expect to see supply crash. Of course, "demand" will still carry merrily on its way up anyway, but the interpretation of the consequently growing supply shortfall will be left to the eye of the beholder...
To maintain economic wealth (roads, hospitals, power
lines, etc.) power needs to be consumed. The same applies to economic activity,
since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning
of fossil fuels was responsible for 79 percent of
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


See  basic Dystopia model  first. Idea here is to add a second "clean" energy source, which is is not constrained by pollution. The expectation, of course, is that, as the pollution constraint kicks in, this can take over the drive from the demand that would otherwise remain unsatisfied...
See basic Dystopia model first. Idea here is to add a second "clean" energy source, which is is not constrained by pollution. The expectation, of course, is that, as the pollution constraint kicks in, this can take over the drive from the demand that would otherwise remain unsatisfied...
   THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Basic idea is to model demand with endogenous growth (but "satiation" becomes possible - eventually - at some notional "sufficiency" level); and supply then attempts to track demand with some time lag (~5-50 years - characteristic of commissioning/decommissioning large scale energy infrastructure).
Basic idea is to model demand with endogenous growth (but "satiation" becomes possible - eventually - at some notional "sufficiency" level); and supply then attempts to track demand with some time lag (~5-50 years - characteristic of commissioning/decommissioning large scale energy infrastructure). But supply also produces pollution, which accoumulates. We can specify a notional constraint/limit; approaching this should trumpdemand and forces supply to zero. In this version we'll only have one source. so no substitution is possible. We expect to see a fairly sudden supply crash. Of course, "demand" will still carry merrily on its way up anyway, but the interpretation of the consequently growing supply shortfall will be left to the eye of the beholder. NB: this version doesn't automatically succeed in limiting P to P_max. It forces dS/dt to zero as A*(P/ P_max) reaches 1; and then as that value exceeds 1, dS/dt is forced negative. But this dynamics has no way to "undo" any overshoot of P over P_max (which would require S itself to become negative: "negative emissions"). Need to manual find/choose a big enough value of A to limit P effectively.
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?