This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This simple model will attempt to demonstrate how modern civilization's groundwater practices are unsustainable and how they are affected by the changing climate.
This simple model will attempt to demonstrate how modern civilization's groundwater practices are unsustainable and how they are affected by the changing climate.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
 There is a general belief that wind and solar will
enable us to get fossil-fuels-use to net-zero. This is, unfortunately,
impossible as an examination of only some limitations and constraints associated
with solar and wind energy will show. Solar panels and wind turbines have now been used for many

There is a general belief that wind and solar will enable us to get fossil-fuels-use to net-zero. This is, unfortunately, impossible as an examination of only some limitations and constraints associated with solar and wind energy will show. Solar panels and wind turbines have now been used for many years, but until now they represent only a tiny fraction of total energy use (not just electricity but all forms of energy).  In 2020, wind accounted for 3% of the world’s total energy consumption and solar amounted to 1% of total energy. Thus, the combination of wind and solar produced only 4% of world energy in 2020. How long will we have to wait before they can generate enough energy to power the world? The climate emergency will not wait.  Solar panels and wind turbines have average lifespans of around 15 to 30 years, then they need to be replaced. However, the manufacture of the replacements will require fossil fuels since one cannot use wind or solar to build wind and solar. Further, solar panels do not supply enough energy. The net-energy gained from solar panels is only about 3.9:1. This net-energy ratio is known as ‘energy return on energy invested’ (EROI) and is critically important.  Unfortunately, the EROI of solar is far too low to power a modern industrial society, which requires an EROI of about 12:1. There is also the question of space. Renewable energy sources can take up 1000 times more space than fossil fuel – that is bad news for agriculture and food production in a world that is already experiencing food shortages because of global warming. If you take these limitations into consideration, then it becomes clear that solar and wind cannot solve our energy problem – they are a fix that will inevitably fail

How do we create a market where small self generated electricity is cost effetive.
How do we create a market where small self generated electricity is cost effetive.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.   Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.  Aquaculture currently produces sixty million tonnes of fish and shellfish every year.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
•Dry
Period Case

 –
25 years of historical dry period on record (1947-1973)-including drought of
record (1947-1956) 

 –Represents
the dry period case 

 –Future
dry cycle includes dry cycle of AMO and overlay of IPCC climate change
predictions 
•Dry Period Case
– 25 years of historical dry period on record (1947-1973)-including drought of record (1947-1956)
–Represents the dry period case
–Future dry cycle includes dry cycle of AMO and overlay of IPCC climate change predictions 
This is a model depicting Durham region waste management. It shows 4 types of waste, what township they come from, and how much waste (in tonnes) comes from each of the 3 townships in the Durham Region with a Durham Region-owned waste management facility. The garbage leftover from each township afte
This is a model depicting Durham region waste management. It shows 4 types of waste, what township they come from, and how much waste (in tonnes) comes from each of the 3 townships in the Durham Region with a Durham Region-owned waste management facility. The garbage leftover from each township after removing everything recyclable, compostable, and reusable, is sent to the Durham York Energy Center to create energy from the garbage. 
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
 Population growth and increased resource usage per person (in terms of energy, land use, dwellings, public services, use of products, food products, etc.) are at the core of the rapid changes in the Earth's surface layers (land use, soil, hydrosphere, atmosphere), which are unsustainable. To what e
Population growth and increased resource usage per person (in terms of energy, land use, dwellings, public services, use of products, food products, etc.) are at the core of the rapid changes in the Earth's surface layers (land use, soil, hydrosphere, atmosphere), which are unsustainable. To what extent is the way population growths and increased resource usage is sanctioned consistent with the ethical principles our society is based on and what changes in systems that provide sanctions for population growth and resource usage would increase the consistency between the normative and descriptive ethics in our society? The case study will consider what population growth and increase in resource usage is expected for the Chesapeake Bay area and identify the potential hazards this growth might create for the Bay. The study will discuss the fragilities of the human and non-human environment to growth-related hazards, and will develop foresight in terms of possible futures. The study will consider to what extent these futures would be consistent with the current ethics and develop interventions that would reduce any discrepancy between the descriptive and normative ethics.
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
Market-led Sustainability is  a 'Fix-that-Fails' as is illustraited in this graph in a very simplified manner. Likely market-led initiatives would be investment in renewables, electric cars and the development of long-term battery storage as a back-up to renewable energy adn other initiatives. Howev
Market-led Sustainability is  a 'Fix-that-Fails' as is illustraited in this graph in a very simplified manner. Likely market-led initiatives would be investment in renewables, electric cars and the development of long-term battery storage as a back-up to renewable energy adn other initiatives. However, all of these make demands on the environmemt, requiring  resources, fossil fuels (solar cannot beused to built  solar) and will be accompanied by greenhouse gas emission. In the medium and long term  they will undermine the market-driven goal,  increasing  environmental and economic costs.  The whole enterprise will eventually fail.