HANDY Model of Societal Collapse from Ecological Economics  Paper   see also D Cunha's model at  IM-15085
HANDY Model of Societal Collapse from Ecological Economics Paper 
see also D Cunha's model at IM-15085
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.   Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.  Aquaculture currently produces sixty million tonnes of fish and shellfish every year.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
Japan is facing a decline in forestry engaged population. By using this model you can speculate the optimum allocation of the workforce.
Japan is facing a decline in forestry engaged population. By using this model you can speculate the optimum allocation of the workforce.
•Average
(Status Quo) Case

 –Last
30 years of historical EAA data  

 –Used
the past to predict the future 

 –Represents
the status quo case 

 –Includes
the dry portion  and wet portion of AMO
cycle
•Average (Status Quo) Case
–Last 30 years of historical EAA data
–Used the past to predict the future
–Represents the status quo case
–Includes the dry portion  and wet portion of AMO cycle
Rough draft of model to relate Edwards Aquifer water storage to spring flow, pumping rates and other variables.
Rough draft of model to relate Edwards Aquifer water storage to spring flow, pumping rates and other variables.
This simple model will attempt to demonstrate how modern civilization's groundwater practices are unsustainable and how they are affected by the changing climate.
This simple model will attempt to demonstrate how modern civilization's groundwater practices are unsustainable and how they are affected by the changing climate.
•Average
(Status Quo) Case

 –Last
30 years of historical EAA data  

 –Used
the past to predict the future 

 –Represents
the status quo case 

 –Includes
the dry portion  and wet portion of AMO
cycle
•Average (Status Quo) Case
–Last 30 years of historical EAA data
–Used the past to predict the future
–Represents the status quo case
–Includes the dry portion  and wet portion of AMO cycle
•Dry
Period Case

 –
25 years of historical dry period on record (1947-1973)-including drought of
record (1947-1956) 

 –Represents
the dry period case 

 –Future
dry cycle includes dry cycle of AMO and overlay of IPCC climate change
predictions 
•Dry Period Case
– 25 years of historical dry period on record (1947-1973)-including drought of record (1947-1956)
–Represents the dry period case
–Future dry cycle includes dry cycle of AMO and overlay of IPCC climate change predictions 
Market-led Sustainability is  a 'Fix-that-Fails' as is illustraited in this graph in a very simplified manner. Likely market-led initiatives would be investment in renewables, electric cars and the development of long-term battery storage as a back-up to renewable energy adn other initiatives. Howev
Market-led Sustainability is  a 'Fix-that-Fails' as is illustraited in this graph in a very simplified manner. Likely market-led initiatives would be investment in renewables, electric cars and the development of long-term battery storage as a back-up to renewable energy adn other initiatives. However, all of these make demands on the environmemt, requiring  resources, fossil fuels (solar cannot beused to built  solar) and will be accompanied by greenhouse gas emission. In the medium and long term  they will undermine the market-driven goal,  increasing  environmental and economic costs.  The whole enterprise will eventually fail.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.