Create an Insight Maker account to start building models. Insight Maker is completely free.


Start Now

Insight Maker runs in your web-browser. No downloads or plugins are needed. Start converting your ideas into your rich pictures, simulation models and Insights now. Features

Simulate

Explore powerful simulation algorithms for System Dynamics and Agent Based Modeling. Use System Dynamics to gain insights into your system and Agent Based Modeling to dig into the details. Types of Modeling

Collaborate

Sharing models has never been this easy. Send a link, embed in a blog, or collaborate with others. It couldn't be simpler. More

Free & Open

Build your models for free. Share them with others for free. Harness the power of Insight Maker for free. Open code mean security and transparency. More


Explore What Others Are Building

Here is a sample of public Insights made by Insight Maker users. This list is auto-generated and updated daily.

 Causal loop diagram unfolding story based on Jack  Homer's  paper  Worker burnout: a dynamic model See  IM-333  for the Simulation model and  IM-2178  for a related Causal Loop Diagram of Project Turnover 
  

Causal loop diagram unfolding story based on Jack  Homer's paper Worker burnout: a dynamic model See IM-333 for the Simulation model and IM-2178 for a related Causal Loop Diagram of Project Turnover

 

13 last week
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

181 3 months ago
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.   By adjusting the sliders below you can    observe the work process  without  any work in process limitations ( WIP Limits ),   with process step specific WIP Limits* (
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.

By adjusting the sliders below you can 
  • observe the work process without any work in process limitations (WIP Limits), 
  • with process step specific WIP Limits* (work state WIP limits), 
  • or you may want to see the impact of the Tameflow approach with Kanban Token and Replenishment Token 
  • or see the impact of the Drum-Buffer-Rope** method. 
* Well know in (agile) Kanban
** Known in the physical world of factory production

The "Tameflow approach" using Kanban Token and Replenishment Token as well as the Drum-Buffer-Rope method take oth the Constraint (the weakest link of the work process) into consideration when pulling in new work items into the delivery "system". 

You can also simulate the effects of PUSH instead of PULL. 

Feel free to play around and recognize the different effects of work scheduling methods. 

If you have questions or feedback get in touch via twitter @swilluda

The work flow itself
Look at the simulation as if you would look on a kanban board

The simulation mimics a "typical" software delivery process. 

From left to right you find the following ten process steps. 
  1. Input Queue (Backlog)
  2. Selected for work (waiting for analysis or work break down)
  3. Analyse, break down and understand
  4. Waiting for development
  5. In development
  6. Waiting for review
  7. In review
  8. Waiting for deployment
  9. In deployment
  10. Done
Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
A visual look at using technology in school based on the article:     Levin, B. B., & Schrum, L. (2013). Using systems thinking to leverage technology for school improvement: Lessons learned from award-winning secondary Schools/Districts.  Journal of Research on Technology in Education,   46 (1)
A visual look at using technology in school based on the article:

 Levin, B. B., & Schrum, L. (2013). Using systems thinking to leverage technology for school improvement: Lessons learned from award-winning secondary Schools/Districts. Journal of Research on Technology in Education, 46(1), 29-51.