This model is to explain the COVID-19 outbreak in Brunie Island, Tasmania, Australia, and the relationship between it and the government policies , also with the local economy.      This model is upgraded on the basis of the SIR model and adds more variables.      A large number of COVID-19 cases w
This model is to explain the COVID-19 outbreak in Brunie Island, Tasmania, Australia, and the relationship between it and the government policies , also with the local economy.

This model is upgraded on the basis of the SIR model and adds more variables.

A large number of COVID-19 cases will have a negative impact on the local economy. But if the number of cases is too small, it will have no impact on the macro economy

Government policy will help control the growth of COVID-19 cases by getting people tested.


Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.    Modified by Rio dan Pras
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.

Modified by Rio dan Pras
A simple SI (Susceptible-Infectious) model that captures the dynamics of COVID-19.
A simple SI (Susceptible-Infectious) model that captures the dynamics of COVID-19.
35 7 months ago
Cálculo de Número de Infectados do COVID-19 Cálculo de Ocupação de Leitos de UTI
Cálculo de Número de Infectados do COVID-19
Cálculo de Ocupação de Leitos de UTI
 The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people
The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people and have a high rate to be infected. The period of spreading can be controlled by keeping social distance and Government lockdown policy. 

Susceptible can be exposed by go out.  resident has a possibility to infect and be infected by others. people who might be die due to the lack of immunity. and others would recover and get the immune. 

Beside, the economy situation is proportionate to the recovery rate. If there are more recovery rate from the pandemic, the employment rate will be increased and the economy situation will recover as well.   
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.    Modified by Rio dan Pras
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.

Modified by Rio dan Pras
 About the Model   This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.   This model is based on SIR model, which explains the dynamic reflection between the people who were
About the Model 
This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.

This model is based on SIR model, which explains the dynamic reflection between the people who were susceptible, infected,deaths and recovered. 

Assumptions 
This model assumes that when the Covid-19 positive is equal or bigger than 10, the government policy can be triggered. This model assumes that the shopping rate in retail shops and the dining rates in the restaurants can only be influenced by the government policy.

Interesting Insights  

The government police can have negative influence on the infection process, as it reduced the possibility of people get infected in the public environments. The government policy has a negative effect on shopping rate in retail shops and the dining rate in the restaurants. 

However, the government policy would cause negative influence on economy. As people can not  shopping as normal they did, and they can not dinning in the restaurants. The retail selling growth rate and restaurant revenue growth rate would be reduced, and the economic situation would go worse. 
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

Model on Covid-19 infectivity rate over a total population.
Model on Covid-19 infectivity rate over a total population.
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)        Germany
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 65 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly)
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating)
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again)

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again