This is an example of the balancing loop described by Dennis Sherwood on page 103 of his book, Seeing the Forest for the Trees - a Manager's Guide to Applying Systems Thinking.
This is an example of the balancing loop described by Dennis Sherwood on page 103 of his book, Seeing the Forest for the Trees - a Manager's Guide to Applying Systems Thinking.
Modelling after Earth, this is a model of the  greenhouse effect  has in increasing the temperature. By trapping some of the radiation emitted by the planet the atmosphere can is itself a positive feedback loop.
Modelling after Earth, this is a model of the greenhouse effect has in increasing the temperature. By trapping some of the radiation emitted by the planet the atmosphere can is itself a positive feedback loop.
 This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.     Step through the story at the bottom of t
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.

Step through the story at the bottom of this window.
This is a simulation of exponential growth as set out by Dennis Sherwood in his book, Seeing the Forest for the Trees: A manager's guide to applying systems thinking.  The story of the frogs is this:     A
colony of frogs is living happily on one side of a large pond.  At the other side of the pond
This is a simulation of exponential growth as set out by Dennis Sherwood in his book, Seeing the Forest for the Trees: A manager's guide to applying systems thinking.  The story of the frogs is this:

A colony of frogs is living happily on one side of a large pond.  At the other side of the pond is a lily pad.  One day, a chemical pollutant flows into the pond, which has the effect of stimulating the growth of the lily pad so that it doubles every 24 hours.  This is a problem for the frogs, for if the lily pad were to cover the pond entirely, the frog colony would be wiped out.

•Q1: how would you describe the growth of the lily pad?
•Q2: if the lily-pad can cover the entire pond in 50 days, on what day is the pond half covered?
•Q3: The frogs have a method of stopping the growth of the lily-pad, but it takes them 10 days to put their method into effect.  What proportion of the pond is covered at the latest possible time the frogs can take action to save themselves?

  The World Socio-Economics model is computer model to simulate the consequence of interactions between the earth and human systems based on the World3 model by the work of Club of Rome, The Limits to Growth[1].     The World3 model builds by system dynamics theory that is has an approach to underst
The World Socio-Economics model is computer model to simulate the consequence of interactions between the earth and human systems based on the World3 model by the work of Club of Rome, The Limits to Growth[1].

The World3 model builds by system dynamics theory that is has an approach to understanding the nonlinear behaviour of complex systems over time using stocks, flows, feedback loops, table functions and time delays.

The Limits to Growth concludes that, without substantial changes in resource consumption, "the most probable result will be a rather sudden and uncontrollable decline in both population and industrial capacity". 

Since the World3 model was originally created, it has had minor tweaks to get to the World3-91 model used in the book Beyond the Limits[2], later improved to get the World3-03 model used in the book Limits to Growth: the 30 year update[3].

References;
[1] Meadows, Donella H., Meadows, Dennis L., Randers, Jørgen., Behrens III, William W (1972). The Limits to Growth. 

[2] Meadows, Donella H., Dennis L. Meadows, Randers, Jørgen., (1992). Beyond the limits: global collapse or a sustainable future.

[3] Meadows, Dennis., Randers, Jørgen., (2004). The limits to growth: the 30-year update.
 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST W

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.  
 Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amo

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.


Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
8 10 months ago
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
1D harmful algal bloom model for Alexandrium based on population dynamics for the the Gulf of Maine described in McGillicuddy, Anderson et al. (2005) and model by Stock, McGillicuddy et al. (2005).  References:    McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large
1D harmful algal bloom model for Alexandrium based on population dynamics for the the Gulf of Maine described in McGillicuddy, Anderson et al. (2005) and model by Stock, McGillicuddy et al. (2005).

References:

McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.


Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium  fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.

This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
Clone of:  'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).   Translated to English (by Lisa Belyea)
Clone of: 
'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).
Translated to English (by Lisa Belyea)
5 months ago
  Questo modello di bilancio delle radiazioni emesse e assorbite mostra l'effetto serra che l'atmosfera può avere nel riscaldamento di un pianeta simile alla terra. Trattenendo parte della radiazione emessa dal pianeta, l'atmosfera può far sì che la superficie diventi più calda di quanto non sarebbe
Questo modello di bilancio delle radiazioni emesse e assorbite mostra l'effetto serra che l'atmosfera può avere nel riscaldamento di un pianeta simile alla terra. Trattenendo parte della radiazione emessa dal pianeta, l'atmosfera può far sì che la superficie diventi più calda di quanto non sarebbe altrimenti.

Passate attraverso la storia in fondo a questa finestra.
4 6 months ago
This model demonstrates positive feedback that decreases the surface albedo and increases the greenhouse effect and examines its impact on this planet's temperature.
This model demonstrates positive feedback that decreases the surface albedo and increases the greenhouse effect and examines its impact on this planet's temperature.
   THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

 Capital Certainty Aims to model the World in order to eradicate externalities: The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. 
 Use the sliders to experiment with the initial amount of non-renew

Capital Certainty Aims to model the World in order to eradicate externalities: The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a more environmentally focused policy.

 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.  Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amoun

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a more environmentally focused policy.

"The World3 model is a system dynamics model for computer simulation of interactions between population, industrial growth, food production and limits in the ecosystems of the earth.

It was originally produced and used by a Club of Rome study that produced the model and the book The Limits to Growth (1972).

 The creators of the model were Dennis Meadows, project manager, and a team of 16 researchers

The main systems are: the food system, dealing with agriculture and food production, the industrial system, the population system,  the non-renewable resources system,  the pollution system. 

Scenario is below

Scenario2: Initial Natural Resource 1T -> 2T

Scenario3: Scenario2 + Persistent Pollution Tech Change Multiplier (-1,0)->(-1, -0.04)

Scenario4: Scenario3 + Yield Tech Change Multiplier (-1,0) -> (-1,0.04)

Scenario5: Scenario4 + Land life time 2100 -> 2002

Scenario6: Scenario5 + Resource Technology Change Multiplier (-1, 0) -> (-1, -0.04)

Scenario7: Scenario2 + Year of continued fertility change 2100 -> 2002, Time to zero population growth 2100 -> 2002

Scenario8: Scenario7 + Desired annual industrial per capita output 400 -> 350, Year of Industrial Equilibrium 2100 -> 2002

Scenario9: Scenario8 + scenario6

Scenario10: Scenario9 + Policy adoption year 2002 -> 1982 

Editor Original Snenario: Scenario4 + Land life time 2100 -> 2030 + Resource Technology Change Multiplier (-1, 0) -> (-1, -0.04) + Year of continued fertility change 2100 -> 2030, Time to zero population growth 2100 -> 2030 + Desired annual industrial per capita output 400 -> 350, Year of Industrial Equilibrium 2100 -> 2030 + Policy adoption year 2002 -> 2030.

This description is from https://en.wikipedia.org/wiki/World3 

Model adapted from the implementation presented in Cellier, F.E. (2008), https://people.inf.ethz.ch/fcellier/Pubs/World/modelica_08_world3.pdf"

World3 in Modelica: Creating System Dynamics Models in the Modelica Framework, Proc. 6th International Modelica Conference, Bielefeld, Germany, Vol.2, pp. 393-400.