Marine plastic is rapidly increasing due to increasing production and use of plastic in all economic activities, short use times and long life times of plastic, and large mismanagement of plastic waste. With this, the threat plastic poses to the marine biosphere is also increasing and will continue
Marine plastic is rapidly increasing due to increasing production and use of plastic in all economic activities, short use times and long life times of plastic, and large mismanagement of plastic waste. With this, the threat plastic poses to the marine biosphere is also increasing and will continue to increase over a long time into the future. Risk knowledge is limited and risk perception and awareness are not resulting in significant mitigation efforts. The case study will aim at modeling the use and life cycles of plastic and the transport paths that lead to plastic entering the ocean. The models will be used to simulate possible futures based on a scenario approach. The results of these efforts will be visualized with the goal to increase risk awareness.
 Allison Zembrodt's Model    This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data f
Allison Zembrodt's Model

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

equations I used in kill rate :

power model - 12*0.1251361120909615*([Moose]/[Wolves])^.44491970277839954*[Wolves]


Kill rate sqrt = 12*(0.0933207+.0873463*([Moose]/[Wolves])^.5)*[Wolves]


Holling Type III - ((0.986198*([Moose]/[Wolves])^2)/ (601.468 +([Moose]/[Wolves])^2))*[Wolves]*12


linear - 12*[Wolves]*(.400271+.00560299([Moose]/[Wolves]))


This model describes the N isotope dynamics in a marine system where the shallowness of the chemocline prevents significant nitrification near the base of the photic zone.
This model describes the N isotope dynamics in a marine system where the shallowness of the chemocline prevents significant nitrification near the base of the photic zone.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
This model implements the equations proposed by Ketchum in 1954. The rationale behind the concept is that only phytoplankton that grows above a certain rate will not be flushed out of an estuary.  For biological processes:  Pt  =  Po exp(kt)  Where Pt is the phytoplankton biomass at time t, Po is th
This model implements the equations proposed by Ketchum in 1954. The rationale behind the concept is that only phytoplankton that grows above a certain rate will not be flushed out of an estuary.

For biological processes:

Pt  =  Po exp(kt)

Where Pt is the phytoplankton biomass at time t, Po is the initial biomass, and k is the growth rate.

For physical processes:

Pm  =  Po (1-r)^m

Where Pm is the phytoplankton biomass after m tidal cycles, and r is the exchange ratio (proportion of estuary water which does not return each tidal cycle).

By substitution, and replacing t by m in the first equation, we get:

Pm = Poexp(km).(1-r)^m

For phytoplankton to exist in an estuary, Pm = Po (at least), i.e. 1 / (1-r)^m = exp(km)
ln(1) - m.ln(1-r) = km
-m.ln(1-r) = km
k = -ln(1-r)

Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200.

In 2005, Ferreira and co-workers showed that this balance has direct implications on biodiversity of estuarine phytoplankton, and discussed how this could be relevant for water management, in particular for the EU Water Framework Directive 60/2000/EC (Ecological Modelling, 187(4) 513-523).
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.

 The model starts in 1900. In the year 2000 you get the chance to set a new emission target and nominal time to reach it. Your aim is to have atmospheric CO2 stabilise at about 400 ppmv in 2100.  From Sterman, John D. (2008)   Risk Communication on Climate:  Mental Models and Mass Balance .  Science
The model starts in 1900. In the year 2000 you get the chance to set a new emission target and nominal time to reach it. Your aim is to have atmospheric CO2 stabilise at about 400 ppmv in 2100.  From Sterman, John D. (2008)  Risk Communication on Climate:  Mental Models and Mass Balance.  Science 322 (24 October): 532-533. Clone of IM-694 to run 1900 to 2100.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
Teilmodell für die Umweltbelastung mit den Parametern Schadstoffeintrag, Erholungsrate und Schadschwelle.
Teilmodell für die Umweltbelastung mit den Parametern Schadstoffeintrag, Erholungsrate und Schadschwelle.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
  The effect of phosphorus on an ecosystem
 The effect of phosphorus on an ecosystem
Tomado de: Modeling forest succession in a northeast deciduous forest. Modificado para Bosque Subtropical
Tomado de: Modeling forest succession in a northeast deciduous forest.
Modificado para Bosque Subtropical
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.