Explore Insights New Insights Help
Sign Up for a Free Account Log In

Insight Maker

Environment Models

These models and simulations have been tagged “Environment”.

Related tagsDemographicsPopulation GrowthEcologyPopulationEconomicsFood Chain

Insight diagram
Deforestation
Profile photo Aude Souvestre
Insight diagram
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel.
Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
Miniwelt nach Bossel, Reiche kriegen weniger Kinder
Profile photo Thomas Neher
Insight diagram
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
Clone of Group 1 BA Assignment2 MEL
Profile photo Irede
Insight diagram

This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and add to the stock at which they end.

Clone of Story of nitrogen dynamics in a shallow lake
Profile photo Caleb Jacob Coffey
Insight diagram

A simulation illustrating simple predator prey dynamics. You have two populations.

Clone of Predator Prey
Profile photo Alain Plante
Insight diagram
Polyrhachis identification chart
Not aware of your Polyrhachis identification type, use this to help identify it.

(Not all species listed) (all located on Australia)
Polyrhachis identification chart
Profile photo Rory D
Insight diagram
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

Clone of Transformative Agency in Social-Ecological System
Profile photo Timur
Insight diagram
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Clone of Clone of Vollenweider model
Profile photo Amanda
Insight diagram
For Sustainability & Eco Innovation class
Clone of The Olympics Stock & Flow + Stakeholders
Profile photo Nhan Dung
Insight diagram
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.


Primary production of phytoplankton (SIMA2018_G1)
Profile photo Diogo Filipe Prata Gomes
6
Insight diagram
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
Clone of Clone of Clone of ENVE 431 - HW5 - PROBLEM 7
Profile photo Anna Messing
Insight diagram
Model of how different features impact water supply and how water access disparity can influence conflict.
Water Distribution and Conflict: Israel & Palestine (Best-Guess Model)
Profile photo Mariela Medina Castellanos
4
Insight diagram
This model illustrates the key processes that influence the water level within Lake Okeechobee.


References:

Southwest Florida Water Management District. (2020). Lake Okeechobee. Retrieved from https://apps.sfwmd.gov/sitestatus/

United States Geological Survey. (2020). USGS Water-Year Summary for Site USGS 02276400. Retrieved from https://nwis.waterdata.usgs.gov/nwis/wys_rpt?dv_ts_ids=210619&wys_water_yr=2019&site_no=02276400&agency_cd=USGS&adr_water_years=2006%2C2007%2C2008%2C2009%2C2010%2C2011%2C2012%2C2013%2C2014%2C2015%2C2016%2C2017%2C2018%2C2019&referred_module=

Winchester, J. (2020, October 10). Water releases from Lake Okeechobee to begin next week. Retrieved from https://www.winknews.com/2020/10/09/water-releases-from-lake-okeechobee-to-begin-next-week/


Created By:

Roger Al-Bahou
Carlos Alvarez
Christina Burgess
Devin Hanley
Daniel Harper
Water Level in Lake Okeechobee
Profile photo Roger Al-Bahou
Insight diagram
The following insight shows the level of crime in the town of Bourke in comparison to the levels of Police and Community Engagement
Clone of Crime vs. Engagement
Profile photo Brett Ely
Insight diagram
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Clone of Clone of Oyster Growth based on Phytoplankton Biomass
Profile photo António Delgado
Insight diagram
Combining electromobility and renewable energies since 2014.

http://www.amsterdamvehicle2grid.nl/

SEEV4-City Prototype model
Profile photo Carlos
27
Insight diagram
A system diagram for the Mojave Desert including example socio-economic factors for an assignment at OSU- RNG 341.
Mojave Desert System Diagram with SES
Profile photo Abi Wells
Insight diagram
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

Clone of Transformative Agency in Social-Ecological System
Profile photo Precious Jack
Insight diagram
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Clone of Vollenweider model
Profile photo Hui Yang
Insight diagram
Plastic Pollution Solution Revolution
Profile photo Andy Windy
8
Insight diagram
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Clone of Vollenweider model
Profile photo James Dare
Insight diagram
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
Clone of Very Simple Ecosystem Model with Evapotranspiration (VSEM-ET)
Profile photo Liz McCracken
Insight diagram

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

2018 OVERPOPULATION LEADS TO POLLUTION based on Weather & Climate Extreme Loss of Arable Land and Ocean Fertility by Guy Lakeman - The World3+ Model: Forecaster
Profile photo Guy Lakeman
24
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
Clone of Isle Royale: Predator Prey Interactions
Profile photo Yves
  • ‹ previous
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • ...
  • next ›
contact@insightmaker.com | Terms of Use | Privacy Policy
Copyright 2026.   Built with ☘️ in Ireland. GitHub logo Open-Source JavaScript Simulation Library