#### Clone of Clone3f micro algae , biogas , bioelectrcidades

##### Mark Nickelo Blanco

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago

#### First Population Model_v01

##### Prof. Dr. Michael von Kutzschenbach

- 9 months 6 days ago

#### Clone of Clone of micro algae , biogas , bioelectrcidades

##### Rajesh Shivanahalli Kempegowda

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 1 month ago

#### Clone of PannirbrClone4f micro algae , biogas , bioelectrcidades

##### Mark Nickelo Blanco

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Biogas, model as well birefineray option to seperate c02 , chp from bogas model are proposed

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 2 weeks ago

#### Clone of Clone of micro algae , biogas , bioelectrcidades

##### Mark Nickelo Blanco

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Wanyu Huang

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 1 year 3 months ago

#### Clone of Clone of micro algae , biogas , bioelectrcidades

##### Rajesh Shivanahalli Kempegowda

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 1 month ago

#### Clone of OVERSHOOT GROWTH INTO TURBULENCE

##### Scott Keely

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth Strategy Weather

- 2 years 10 months ago

#### 00_Pemodelan_Simulasi Kijang

##### Ilham Muliana Rahman

- 2 months 3 weeks ago

#### Simple Market Saturation

##### Steven D'Alessandro ★

- 2 months 3 weeks ago

#### Clone of Simple Economic Growth Model

##### Pavan Srinath

- 3 years 4 months ago

#### Clone of FORCED GROWTH INTO TURBULENCE

##### Rodrigo Solis

**FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION**

**BEWARE pushing increased growth blows the system!**

**(governments are trying to push growth on already unstable systems !)**

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Strategy Weather

- 1 year 5 months ago

#### Clone of EasyJet Fliers Model

##### Steven van Hekelen

Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in http://bit.ly/HdaGy4 for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

- 2 years 5 months ago

#### Clone of Clone of Oyster Growth based on Phytoplankton Biomass

##### Pagandai V Pannirselvam

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago

#### Clone of Clone of Clone of micro algae , biogas , bioelectrcidades

##### Pagandai V Pannirselvam

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 1 month ago

#### Clone of model

##### Monisha Yuvaraj

model

- 3 years 4 months ago

#### Clone of Clone3f micro algae , biogas , bioelectrcidades

##### Pagandai V Pannirselvam

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago

#### Clone of Clone of PannirbrClone4f Eco city micro algae , biogas , bioelectrcidades

##### Aluno04 Guilherme

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Biogas, model as well birefineray option to seperate c02 , chp from bogas model are proposed

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 2 weeks ago

#### Clone of PannirbrClone4f Eco city micro algae , biogas , bioelectrcidades

##### Aluno04 Guilherme

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Biogas, model as well birefineray option to seperate c02 , chp from bogas model are proposed

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 2 weeks ago

#### Netflix model

##### Vincent Pierre

- 1 month 2 weeks ago

#### Clone of Clone3f micro algae , biogas , bioelectrcidades

##### Pagandai V Pannirselvam

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago

#### Clone of Clone of Clone of micro algae , biogas , bioelectrcidades

##### Pagandai V Pannirselvam

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago

#### Clone of Population of France (Developed) Over Time

##### A Gledhill

- 7 months 4 weeks ago

#### Clone of Clone3f micro algae , biogas , bioelectrcidades

##### Pagandai V Pannirselvam

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)

I: Light energy at depth of interest (uE m-2 s-1)

Iopt: Light energy at which Pmax occurs (uE m-2 s-1)

S: Nutrient concentration (umol N L-1)

Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:

- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.

- Light limited by the concentration of phytoplankton.

- Temperature effect on phytoplankton and Oyster growth.

Environment Phytoplankton Primary Production Bivalves Growth

- 3 years 3 weeks ago