Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Population

Population of Algeria (Developing) Over Time

Christopher Hartline
Here we model the population of Algeria given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the net birth rate would be zero, and used this year for our birth and death rates to are equal to zero. We assumed no net movement of people into or out of Algeria.

Population Growth

  • 4 years 3 months ago

World4_Land_HW2

Christopher Bystroff
Can World3 be simplified? This is a model of the global human ecology. Closed systems are defined for carbon and land. An open system is defined for non-renewable non-fossil fuels in which the sink is external.  Energy is modeled as an open system with inflow from converters and outflow to various energy-driven human activities.--------Model is in template form. Units are Tonnes (carbon or mineral (copper) ), Tonnes per Year, Hectares, Hectares per Year. Ready for input of real world values.  --CB 24Feb16--------We have started putting real world data into the model.  Fill in stocks and flows by March 11. Be sure to cite the source of the data in the Notes section. --CB 5mar2016--------Here is the land portion filled out to the best of our extent. All data has been acquired from the Food and Agricultural Organization of the United Nations (FAO, http://faostat3.fao.org) and Science (http://www.sciencedirect.com/science/article/pii/S0143622814002793). Values for degraded and unusable land were calculated from total land. Agricultural land values were also calculated using calories produced globally over calories per hectare, and the values were consistent.  J.N., T.R., L.B., Land group

Population

  • 4 years 2 months ago

Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

Ivan Stamenkovic
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt Where  • F(t) is the probability of failure  • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)
The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early LifeIf we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.
Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  
Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Failure Strategy

  • 5 years 3 months ago

Population of Haiti (Undeveloped) Over Time (with Uncertainty)

Christopher Hartline
Here we model the population of Haiti given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the net birth rate would be zero, and used this year for our birth and death rates to are equal to zero. We assumed no net movement of people into or out of Haiti. We add that at any given time, our knowledge of the birth and death rates is not accurate, where our rates vary with a standard deviation equal to the standard deviation in the rates from 1960 to 2013.

Population Growth

  • 4 years 3 months ago

World 4 for editing

Ben Price
Can World3 be simplified? This is a model of the global human ecology. Closed systems are defined for carbon and land. An open system is defined for non-renewable non-fossil fuels in which the sink is external.  Energy is modeled as an open system with inflow from converters and outflow to various energy-driven human activities.--------Model is in template form. Units are Tonnes (carbon or mineral (copper) ), Tonnes per Year, Hectares, Hectares per Year. Ready for input of real world values.  --CB 24Feb16--------We have started putting real world data into the model.  Fill in stocks and flows by March 11. Be sure to cite the source of the data in the Notes section. --CB 5mar2016--------

Population

  • 4 years 2 months ago

Population of Algeria (Developing) Over Time (with Uncertainty)

Christopher Hartline
Here we model the population of Algeria given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the net birth rate would be zero, and used this year for our birth and death rates to are equal to zero. We assumed no net movement of people into or out of Algeria. We add that at any given time, our knowledge of the birth and death rates is not accurate, where our rates vary with a standard deviation equal to the standard deviation in the rates from 1960 to 2013.

Population Growth

  • 4 years 3 months ago

Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

atif
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt Where  • F(t) is the probability of failure  • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)
The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early LifeIf we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.
Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  
Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Failure Strategy

  • 7 years 2 months ago

Testing of Caribou Conservation Sub-Models v2

Rob Rempel
Woodland caribou is a species at risk because of northward expansion of resource development activity.  Some herds are in dire condition and well below self-sustainability, while others are only moderately below self-sustaining levels.  Given limited conservation dollars, what are the most effective conservation actions, and how much money needs to be spent?  Which herds should be a priority for conservation efforts? The purpose of this model to provide insight into these difficult conservation questions.  
This model was developed by Rob Rempel and Jen Shuter at the Centre for Northern Forest Ecosystem Research, and was based in part on input from attendees of a modelling workshop ("Modelling the Caribou Questions") held at the 16th North American Caribou Workshop in Thunder Bay, Ontario, May 2016.

Population Caribou Wolves Moose Conservation Triage Ecology

  • 3 years 9 months ago

Clone of FORCED GROWTH INTO TURBULENCE

Sayantan Das
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Strategy Weather

  • 6 years 11 months ago

Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

Shrishail
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.The equation for DeltaN is a version of Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.
Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

  • 7 years 1 month ago

Pages