A simple simulation used to observe the California Yellowtail population in San Diego
A simple simulation used to observe the California Yellowtail population in San Diego
 To keep control on wildlife
deer populations two means are available; killing by hunters or sterilization
and castration. This model allows investigating the best possible method and …  actual risk on extinction caused by proposed
solutions!  Note 1) Data used in this
model are fictitious. 

 Note

To keep control on wildlife deer populations two means are available; killing by hunters or sterilization and castration. This model allows investigating the best possible method and …  actual risk on extinction caused by proposed solutions!

Note 1) Data used in this model are fictitious.

Note 2) Govenrments preferred solution are hunters because this will generate income from licences, sterilization and castration only will generate costs; forester, transport, vet, medical. govenrments should make a stand up for the animals.

Note 3) Other solutions do exist and detail could be added to this analysis model that could result in even better solutions. 

Kind regards,  J.B. van Doesburg

Shows projection of birth and death rate over time.. This one is for Australia.
Shows projection of birth and death rate over time.. This one is for Australia.
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Assessment 4.  This model highlights the interdependent relationship between:    - Police funding  - Community Development  - Youth Alienation  And the impact they have on youth engagement levels over time in the NSW town of Bourke.    Assumptions        The model assumes the youth population of bou
Assessment 4.

This model highlights the interdependent relationship between:

- Police funding
- Community Development
- Youth Alienation

And the impact they have on youth engagement levels over time in the NSW town of Bourke. 

Assumptions

The model assumes the youth population of bourke to be 1000 people. 

Constants

-Community Group effect is delayed by 3 months, aligning the model to seasonality to account for the large impact seasonal sport has on rural community.

- 20% of youth will disengage with the community after realising the development funding doesn't align to their interests. 

- 80% of disengaged youth will be at risk of committing a crime.

- 19% of youth arrested will have their charges dropped

- 81% will have a conviction recorded 

- 21% of detained youth will be rehabilitated in line with the NSW average.

- 79% of detained youth will re-offend in line with the NSW average. 

Variables

- Police Force Funding can be adjusted upward or downward to simulate the effect on engagement, disengagement and crime levels. 

- Community Development Funding can be adjusted to simulate the positive effect developing programs and opportunity for youth in Bourke may have on their engagement in society and the overall crime rate amongst their cohort. 

- Youth Alienation slider allows the rate of youth alienation (Exposure to violence, drugs, alcohol. Lack of training, education and opportunity), to be slowed and speed up to simulate the impact it has on engagement and crime levels. 

Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
This model is under construction, not at all ready, don't use it for any purposes (my suggestion ☺) yet.
This model is under construction, not at all ready, don't use it for any purposes (my suggestion ☺) yet.

 Woodland caribou is a species at risk because of northward expansion of resource development activity.  Some herds are in dire condition and well below self-sustainability, while others are only moderately below self-sustaining levels.  Given limited conservation dollars, what are the most effectiv
Woodland caribou is a species at risk because of northward expansion of resource development activity.  Some herds are in dire condition and well below self-sustainability, while others are only moderately below self-sustaining levels.  Given limited conservation dollars, what are the most effective conservation actions, and how much money needs to be spent?  Which herds should be a priority for conservation efforts? The purpose of this model to provide insight into these difficult conservation questions.  

This model was developed by Rob Rempel and Jen Shuter, and was based in part on input from attendees of a modelling workshop ("Modelling the Caribou Questions") held at the 16th North American Caribou Workshop in Thunder Bay, Ontario, May 2016.
  ​Climate Sector Boundary Diagram By Guy Lakeman    Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)      As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old),
​Climate Sector Boundary Diagram By Guy Lakeman
 Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)

As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old), a simple block of components concerning the health of the planet needs to be broken down into simple blocks.
Perhaps this picture will show the basics on which to vote for a sustained healthy future
Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

A simple simulation used to observe the California Yellowtail population in San Diego
A simple simulation used to observe the California Yellowtail population in San Diego
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
This in-depth concept map portrays the factors influencing koala births and deaths in SEQ. It also shows that the eucalyptus tree population in SEQ is vital for the survival of the koala.
This in-depth concept map portrays the factors influencing koala births and deaths in SEQ. It also shows that the eucalyptus tree population in SEQ is vital for the survival of the koala.
A detailed insight map into the current population trends surrounding koalas and the different variables involved which will influence these trends in years to come.
A detailed insight map into the current population trends surrounding koalas and the different variables involved which will influence these trends in years to come.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
 Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'poli
This model incorporates several options in examining fisheries dynamics and fisheries employment. The two most important aspects are the choice between I)managing based on setting fixed quota versus setting fixed effort , and ii) using the 'scientific advice' for quota setting  versus allowing 'political influence' on quota setting (the assumption here is that you have good estimates of recruitment and stock assessments that form the basis of 'scientific advice' and then 'political influnce' that desires increased quota beyond the scientific advice).
43 9 months ago