Business Models

These models and simulations have been tagged “Business”.

Related tagsTechnology

This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.    © International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.

© International Institute of Business Analysis
 Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the su
Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the supply chain. The so called classical formula computes safety stock at each node as Safety Stock = Z value of the service level* standard deviation * square root (Lead time). Does it sound complicated? It is not. It is only saying, if you know how much of the variability is there from your average, keep some 'x' times of that variability so that you are well covered. It is just the maths in arriving at it that looks a bit daunting. 

While we all computed safety stock with the above formula and maintained it at each node of the supply chain, the recent theory says, you can do better than that when you see the whole chain holistically. 

Let us say your network is plant->stocking point-> Distributor-> Retailer. You can do the above safety stock computation for 95% service level at each of the nodes (classical way of doing it) or compute it holistically. This simulation is to demonstrate how multi-echelon provides better service level & lower inventory.  The network has only one stocking point/one distributor/one retailer and the same demand & variability propagates up the supply chain. For a mean demand of 100 and standard deviation of 30 and a lead time of 1, the stock at each node works out to be 149 units (cycle stock + safety stock) for a 95% service level. You can start with 149 units at each level as per the classical formula and see the product shortage. Then, reduce the safety stock at the stocking point and the distributor levels to see the impact on the service level. If it does not get impacted, it means, you can actually manage with lesser inventory than your classical calculations. 

That's what your multi-echelon inventory optimization calculations do. They reduce the inventory (compared to classical computations) without impacting your service levels. 

Hint: Try with the safety stocks at distributor (SS_Distributor) and stocking point (SS_Stocking Point) as 149 each. Check the number of stock outs in the simulation. Now, increase the safety stock at the upper node (SS_stocking point) slowly upto 160. Correspondingly keep decreasing the safety stock at the distributor (SS_Distributor). You will see that for the same #stock outs, by increasing a little inventory at the upper node, you can reduce more inventory at the lower node.
This simulation mimics the flow of projects through an organization. The organization consists of teams that idependently or collaboratively work on projects. Many of the projects have a mulit-team dependency.    If you want to understand more in depth what this simulation is all about, read this bl
This simulation mimics the flow of projects through an organization. The organization consists of teams that idependently or collaboratively work on projects. Many of the projects have a mulit-team dependency.

If you want to understand more in depth what this simulation is all about, read this blog post: https://stefan-willuda.medium.com/super-powerful-how-full-kitting-will-speed-up-your-cross-team-projects-1598d55fa9d7
  ​Purpose  Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.     5 Capability Model  The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

​Purpose
Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.  

5 Capability Model
The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

Semantic

Getting terms to align to the generic objects can be a trying task, unless you simply list the stakeholders "semantic" term below the stakeholder in the presentation layer by order shown in the business process management section above the capability management group.  



Závislosti v přípravě obchodního reportingu datových a masových služeb
Závislosti v přípravě obchodního reportingu datových a masových služeb
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.    © International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.

© International Institute of Business Analysis
This model is based off Meadows economic capital with reinforcing growth loop constrained by a renewable resource model.
This model is based off Meadows economic capital with reinforcing growth loop constrained by a renewable resource model.
  ​Purpose  Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.     5 Capability Model  The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

​Purpose
Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.  

5 Capability Model
The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

Semantic

Getting terms to align to the generic objects can be a trying task, unless you simply list the stakeholders "semantic" term below the stakeholder in the presentation layer by order shown in the business process management section above the capability management group.  



 Rich picture version of Causal loop diagram based on Jack  Homer's paper Worker burnout: a dynamic model with implications  for prevention and control System Dynamics Review 1985 1(1)42-62 See  IM-333  for the Simulation model 
  

Rich picture version of Causal loop diagram based on Jack  Homer's paper Worker burnout: a dynamic model with implications  for prevention and control System Dynamics Review 1985 1(1)42-62 See IM-333 for the Simulation model

 

This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.    © International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.

© International Institute of Business Analysis
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
 Rich picture version of Causal loop diagram based on Jack  Homer's paper Worker burnout: a dynamic model with implications  for prevention and control System Dynamics Review 1985 1(1)42-62 See  IM-333  for the Simulation model and  IM-2178  for a related Causal Loop Diagram of Project Turnover 
  

Rich picture version of Causal loop diagram based on Jack  Homer's paper Worker burnout: a dynamic model with implications  for prevention and control System Dynamics Review 1985 1(1)42-62 See IM-333 for the Simulation model and IM-2178 for a related Causal Loop Diagram of Project Turnover

 

DRAFT  a small model of a "generic" company.
DRAFT

a small model of a "generic" company.
 Original (more DYNAMO-like) version is here:  http://insightmaker.com/insight/14464        The Simple Retail Sector model from Section 1.7 of  DYNAMO User's Manual  by Alexander L Pugh III, which is adapted from one from  Industrial Dynamics  by Jay Forrester.     http://www.amazon.com/DYNAMO-Manua
Original (more DYNAMO-like) version is here: http://insightmaker.com/insight/14464


The Simple Retail Sector model from Section 1.7 of DYNAMO User's Manual by Alexander L Pugh III, which is adapted from one from Industrial Dynamics by Jay Forrester.

http://www.amazon.com/DYNAMO-Manual-Edition-System-Dynamics/dp/0262660296 (I bought the 5th edition without realising there was a later one, hopefully it's still the same model in there.)
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
WIP Summary of Froud et al 2017  article  from special Theory Culture and Society issue on Elites and Power after Financialization with WIP SIB social impact bonds katz AmJPH 2018  article
WIP Summary of Froud et al 2017 article from special Theory Culture and Society issue on Elites and Power after Financialization with WIP SIB social impact bonds katz AmJPH 2018 article
The Simple Retail Sector model from Section 1.7 of  DYNAMO User's Manual  by Alexander L Pugh III, which is adapted from one from  Industrial Dynamics  by Jay Forrester.     http://www.amazon.com/DYNAMO-Manual-Edition-System-Dynamics/dp/0262660296  (I bought the 5th edition without realising there w
The Simple Retail Sector model from Section 1.7 of DYNAMO User's Manual by Alexander L Pugh III, which is adapted from one from Industrial Dynamics by Jay Forrester.

http://www.amazon.com/DYNAMO-Manual-Edition-System-Dynamics/dp/0262660296 (I bought the 5th edition without realising there was a later one, hopefully it's still the same model in there.)

A tweaked version with slightly more explicit stocks is here: http://insightmaker.com/insight/14467
Causal loop diagram illustrating one of the contributing factors to employee hiring.
Causal loop diagram illustrating one of the contributing factors to employee hiring.