Book Summary of The Great Transformation by Karl Polanyi see  Wikipedia  . See also more Karl Polanyi ideas  IM-181325
Book Summary of The Great Transformation by Karl Polanyi see Wikipedia . See also more Karl Polanyi ideas IM-181325
This model is based off Meadows economic capital with reinforcing growth loop constrained by a renewable resource model.
This model is based off Meadows economic capital with reinforcing growth loop constrained by a renewable resource model.
This page provides a structural analysis of POTUS Candidate Ben Carson's
 economic policy based on the information at:<!--[if gte mso 9]>
 
  
 
<![endif]-->

  https://www.bencarson.com/issues/tax-reform/        

<!--[if gte mso 9]>
 
  
 
<![endif]--> https://www.bencarson
This page provides a structural analysis of POTUS Candidate Ben Carson's economic policy based on the information at:<!--[if gte mso 9]> <![endif]-->

https://www.bencarson.com/issues/tax-reform/

       <!--[if gte mso 9]> <![endif]-->https://www.bencarson.com/issues/balanced-budget-amendment/<!--[if gte mso 9]> Normal 0 false false false EN-US X-NONE X-NONE <![endif]--><!--[if gte mso 9]> <![endif]--><!--[if gte mso 10]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} <![endif]--><!--[if gte mso 9]> Normal 0 false false false EN-US X-NONE X-NONE <![endif]--><!--[if gte mso 9]> <![endif]--><!--[if gte mso 10]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} <![endif]-->       The method used is Integrative Propositional Analysis (IPA) available: ​ http://scipolicy.org/uploads/3/4/6/9/3469675/wallis_white_paper_-_the_ipa_answer_2014.12.11.pdf








 Causal loop diagram capturing the interactions, trade-offs, and synergies between agriculture (SDG 2), water availability (SDG 6), economic growth (SDG 8), and life on land (SDG 15). Positive feedback linkages are shown as a positive sign (+), whereas negative feedback linkages are shown wi

Causal loop diagram capturing the interactions, trade-offs, and synergies between agriculture (SDG 2), water availability (SDG 6), economic growth (SDG 8), and life on land (SDG 15). Positive feedback linkages are shown as a positive sign (+), whereas negative feedback linkages are shown with a negative sign (−). The purple arrows indicate the enviro-biophysical linkages. The green arrows indicate the socio-economic linkages. The SDG icons are courtesy of the UN SDG communications material. 


Reference - Bandari, Reihaneh, et al. "Participatory Modeling for Analyzing Interactions Between High‐Priority Sustainable Development Goals to Promote Local Sustainability." Earth's Future 11.12 (2023): e2023EF003948.

11 months ago
This page provides a structural analysis of POTUS Candidate Jim Gilmore's
 economic policy based on the information at:  http://www.gilmoreforamerica.com/jims-growth-code/   The method used is Integrative 
Propositional Analysis (IPA) 
available: 
​
http://scipolicy.org/uploads/3/4/6/9/3469675/walli
This page provides a structural analysis of POTUS Candidate Jim Gilmore's economic policy based on the information at: http://www.gilmoreforamerica.com/jims-growth-code/  The method used is Integrative Propositional Analysis (IPA) available: ​ http://scipolicy.org/uploads/3/4/6/9/3469675/wallis_white_paper_-_the_ipa_answer_2014.12.11.pdf
Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of  IM-14982  combined with  IM-17598  and  IM-9773
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of IM-14982 combined with IM-17598 and IM-9773
33 6 months ago
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
&lt;!--[if gte mso 9]&gt;
 
  
  
 
&lt;![endif]--&gt;

 Theory of Structural Change for IAMO Research Group      The part-whole paradigm 

 Examples of
research issues addressed here include the path dependence of farm structures,
regime shifts in land-system change, as well as transitional process
<!--[if gte mso 9]> <![endif]-->

Theory of Structural Change for IAMO Research Group


The part-whole paradigm

Examples of research issues addressed here include the path dependence of farm structures, regime shifts in land-system change, as well as transitional processes in the evolution of farm structures and innovation systems. All these issues feature counter-intuitive systemic properties that could not have been predicted using standard agricultural economics tools. The key strength of the research group in regard to the part-whole paradigm is the internationally renowned expertise in the agent-based modelling of agricultural policy. (More on what happened here until now / is happening now)

The system-environment paradigm

This paradigm is represented by conceptual research drawing inspiration from Niklas Luhmann’s theory of “complexity-reducing” and “operationally closed” social systems. The attributes of complexity reduction and operational closure are shown to generate sustainability problems, conflicts, social dilemmas, ethical issues, and divergent mental models. The organizing idea explaining these phenomena is the complexity-sustainability trade-off, i.e., the tendency of the operationally closed systems to develop excessive internal complexity that overstrains the carrying capacity of the environment. Until now, the conceptual work along these lines has focused on developing the systems-theoretic principles of ecological degradation and highlighted the sustainability-enhancing role of nonprofit organizations and corporate social responsibility. Another overarching topic has been the analysis of connections between Luhmann’s social systems theory and the evolutionary economics approaches, such as those of Thorstein Veblen and Kenneth Boulding. <!--[if gte mso 9]> Normal 0 false false false DE X-NONE X-NONE <![endif]--><!--[if gte mso 9]> <![endif]--><!--[if gte mso 10]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:DE;} <![endif]-->
WIP Summary of Miller 2015 PCD  article  for the Compelling Case for Prevention Project Scoping Study. See also economic view  IM 69774  (private)  Simplified at  IM-70351 Tool
WIP Summary of Miller 2015 PCD article for the Compelling Case for Prevention Project Scoping Study.
See also economic view IM 69774 (private)
Simplified at IM-70351 Tool
Extended from  Im-628  Supply and demand by adding control folder. See also Managing Health Services Use  IM-17566   Based on JHPPL 2015  article  Note here the framing is an economic exchange rather than a public service (needs-services-resources) or capabilities
Extended from Im-628 Supply and demand by adding control folder.
See also Managing Health Services Use IM-17566
Based on JHPPL 2015 article Note here the framing is an economic exchange rather than a public service (needs-services-resources) or capabilities
 
			 
				 
					 From Oatley 2014 p214++   Balance-of-Payments Adjustment
  
					 Even though the current and capital accounts must balance each other, there
is no assurancethat the millions of international transactions that individu-
als, businesses, and governments conduct every year will nece

From Oatley 2014 p214++

Balance-of-Payments Adjustment

Even though the current and capital accounts must balance each other, there is no assurancethat the millions of international transactions that individu- als, businesses, and governments conduct every year will necessarily produce this balance. When they don’t, the country faces an imbalance of payments. A country might have a current-accountdeficit that it cannotfully finance throughcapital imports, for example, or it might have a current-accountsur- plus thatis not fully offset by capital outflows. When an imbalancearises, the country must bring its payments back into balance. The process by which a country doessois called balance-of-payments adjustment. Fixed and floating exchange-rate systems adjust imbalances indifferent ways.

In a fixed exchange-rate system, balance-of-payments adjustment occurs through changes in domestic prices. We can most readily understand this ad- justmentprocess through a simple example. Suppose there are only two coun- tries in the world—the United States and Japan—and supposefurther that they maintain a fixed exchange rate according to which $1 equals 100 yen. The United States has purchased 800 billion yen worth of goods, services, and financial assets from Japan, and Japanhas purchased $4 billion of items from the United States. Thus, the United States has a deficit, and Japan a surplus, of $4billion. 

This payments imbalance creates an imbalance between the supply of and the demandfor the dollar and yen in the foreign exchange market. American residents need 800 billion yen to pay for their imports from Japan. They can acquirethis 800 billion yen by selling $8 billion. Japanese residents need only $4 billion to pay for their imports from the United States. They can acquire the $4 billion by selling 400billion yen. Thus, Americanresidentsareselling $4 billion more than Japanese residents want to buy, and the dollar depreci- ates againstthe yen.

Because the exchangerateis fixed, the United States and Japan must prevent this depreciation. Thus, both governmentsintervenein the foreign exchange market, buying dollars in exchange for yen. Intervention has two consequences.First, it eliminates the imbalance in the foreign exchange mar- ket as the governments provide the 400billion yen that American residents need in exchange forthe $4 billion that Japanese residents do not want. With the supply of each currency equalto the demandin the foreign exchange mar- ket, the fixed exchangerate is sustained. Second, intervention changes each country’s money supply. The American moneysupply falls by $4 billion, and Japan’s moneysupplyincreases by 400billion yen. 

The change in the money supplies alters prices in both countries. The reduc- tion of the U.S. money supply causes Americanpricesto fall. The expansion of the money supply in Japan causes Japanese prices to rise. As American prices fall and Japanese prices rise, American goods becomerelatively less expensive than Japanese goods. Consequently, American and Japaneseresidents shift their purchases away from Japanese products and toward American goods. American imports (and hence Japanese exports) fall, and American exports (and hence Japanese imports) rise. As American imports (and Japanese exports) fall and American exports (and Japanese imports) rise, the payments imbalanceis elimi- nated. Adjustment underfixed exchange rates thus occurs through changesin the relative price of American and Japanese goods brought about by the changes in moneysupplies caused by intervention in the foreign exchange market.

In floating exchange-rate systems, balance-of-payments adjustment oc- curs through exchange-rate movements. Let’s go back to our U.S.—Japan sce- nario, keeping everything the same, exceptthis time allowing the currencies to float rather than requiring the governments to maintain a fixed exchangerate. Again,the $4 billion payments imbalance generates an imbalancein the for- eign exchange market: Americansare selling more dollars than Japanese resi- dents want to buy. Consequently, the dollar begins to depreciate against the yen. Because the currencies are floating, however, neither governmentinter- venesin the foreign exchange market. Instead, the dollar depreciates until the marketclears. In essence, as Americans seek the yen they need, they are forced to accept fewer yen for each dollar. Eventually, however, they will acquire all of the yen they need, but will have paid more than $4 billion for them.

The dollar’s depreciation lowers the price in yen of American goods and services in the Japanese market andraises the price in dollars of Japanese goodsandservices in the American market. A 10 percent devaluation of the dollar against the yen, for example, reduces the price that Japanese residents pay for American goods by 10 percentandraises the price that Americans pay for Japanese goods by 10 percent. By making American products cheaper and Japanese goods more expensive, depreciation causes American imports from Japan to fall and American exports to Japan to rise. As American exports expand and importsfall, the payments imbalanceis corrected.

In both systems, therefore, a balance-of-payments adjustment occurs as prices fall in the country with the deficit and rise in the country with the surplus. Consumers in both countries respond to these price changes by purchasing fewer of the now-more-expensive goods in the country with the surplus and more of the now-cheaper goodsin the country with the deficit. These shifts in consumption alter imports and exports in both countries, mov- ing each of their payments back into balance. The mechanism that causes these price changes is different in each system, however. In fixed exchange- rate systems, the exchange rate remains stable and price changes are achieved by changing the moneysupplyin orderto alter prices inside the country. In floating exchange-rate systems, internal prices remain stable, while the change in relative prices is brought about through exchange-rate movements.

Contrasting the balance of payments adjustment process under fixed and floating exchangerates highlights the trade off that governments face between

exchangerate stability and domestic price stability: Governments can have a stable fixed exchangerate or they can stabilize domestic prices, but they cannotachieve both goals simultaneously. If a government wants to maintain a fixed exchangerate, it must accept the occasional deflation and inflation caused by balance-of-payments adjustment. If a governmentis unwilling to accept such price movements,it cannot maintain a fixed exchangerate. This trade-off has been the central factor driving the international monetary system toward floating exchange rates during the last 100 years. We turn now to examine howthis trade-off first led governmentsto create innovativeinter- national monetary arrangements following World WarII and then caused the system to collapse into a floating exchange-rate system in the early 1970s. 

  ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


From Peter Senge's "Fifth Discipline".
From Peter Senge's "Fifth Discipline".