This model shows the operation of an extremely simple economy. The system produces and consumes each item (or good) at a fixed rate.  When production exceeds consumption, consumer goods accumulate in stocks. Trading may occur between actors in this system. That will not, however, affect the quantiti
This model shows the operation of an extremely simple economy. The system produces and consumes each item (or good) at a fixed rate.

When production exceeds consumption, consumer goods accumulate in stocks. Trading may occur between actors in this system. That will not, however, affect the quantities of the stocks of goods. It only affects ownership (not a concern of this model.)
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  In summary, lower rates of consumption (based on production) result in higher rates of
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run. Rates of consumption over 100% of production will diminish the savings stock and eventually cause rates of production and consumption to fall.
An attempt to combine ideas from Joe Stiglitz's  Book  The Price of Inequality,  Peter Turchin 's  book Secular Cycles  and Khalil Saeed and Oleg Pavlov's Dynastic Cycles SD model  paper
An attempt to combine ideas from Joe Stiglitz's Book The Price of Inequality, Peter Turchin's book Secular Cycles and Khalil Saeed and Oleg Pavlov's Dynastic Cycles SD model paper
 Introduction:  This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.      Assumptions:   This model has four variables that influence the number of COVID-19 cases: infecti
Introduction:
This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.

Assumptions:
This model has four variables that influence the number of COVID-19 cases: infection rate, immunity loss rate, recovery rate and death rate.

In order to reduce the pandemic spread, in this model, assume the government released six policies when Burnie COVID-19 cases are equal or over 10 cases. Policies are vaccination promotion, travel restriction to Burnie, quarantine, social distance, lockdown and testing rate.

Government policies would reduce the pandemic. However, it decreases economic growth at the same time. In this model, only list three variable that influence local economic activities. 
Travel restrictions and quarantine will reduce Burnie tourism and decrease the local economy. On the other hand, quarantine, social distance, lockdown allow people to stay at home, increasing E-commerce business.
As a result, policies that cause fewer COVID-19 cases also cause more considerable negative damage to the economy.

Interesting insights:
One of the interesting findings is that the government policy would reduce the COVID-19 spread significantly if I adjust the total government policies are over 20% (vaccine promotion, travel restriction, quarantine, social distance, lockdown), 3560 people will die, then no more people get COVID-19.
However, if I change the total government policy to less than 5%, the whole Burnie people will die according to the model. Therefore, we need to follow the polices, which saves our lives.
​Farmers use intensive pesticides to harvest cotton, which is harmful to not only the health of the farmers using them, but also our environment as it pollutes rivers and groundwater that negatively interfere with the ecosystem. Even though these farmers know of the health and environmental risks, t
​Farmers use intensive pesticides to harvest cotton, which is harmful to not only the health of the farmers using them, but also our environment as it pollutes rivers and groundwater that negatively interfere with the ecosystem. Even though these farmers know of the health and environmental risks, they still use harmful pesticides to produce cotton, but why is this so. This stock and flow map should explain what impacts farmers to use pesticides to grow cotton despite the risks and explain the cause and effect relationship their use has on the cotton industry and the environment.
According to Clevo Wilson and Clem Tisdell article, "Why farmer continue to use pesticides despite environmental, health and sustainable costs,"

Pesticide use by farmers:
  • "used to reduce yield losses to pests"
  • "avoid economic losses to ensure economical survival"
  • "increase supply market and reduce market prices"
  • "ignorance of sustainable use"
  • "integral part of commercially grow high yielding varieties so without use, high yields may not be sustained"
  • "damage to agriculture land from the use occurs over long period of time so costs may not look serious short term, but reduces economic welfare in long term"
  • "environmental damage: pollutes rivers and groundwater, destroys beneficial predators and interferes with ecosystem overall"
  • "health risks underestimated"
  • "chemical companies selling it have incentive to push their use by advertising and promotion" (1,9).
Book Summary of The Great Transformation by Karl Polanyi see  Wikipedia  . See also more Karl Polanyi ideas  IM-181325
Book Summary of The Great Transformation by Karl Polanyi see Wikipedia . See also more Karl Polanyi ideas IM-181325
Extended from  Im-628  Supply and demand by adding control folder. See also Managing Health Services Use  IM-17566   Based on JHPPL 2015  article  Note here the framing is an economic exchange rather than a public service (needs-services-resources) or capabilities
Extended from Im-628 Supply and demand by adding control folder.
See also Managing Health Services Use IM-17566
Based on JHPPL 2015 article Note here the framing is an economic exchange rather than a public service (needs-services-resources) or capabilities
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
 I propose we grow this sim model (or similar) over time to help ourselves better understand the opposing investment and austerity strategies now being advocated for the U.S. government. The hope is to build as simple a model as possible that subsumes the major underlying feedback loops that probabl

I propose we grow this sim model (or similar) over time to help ourselves better understand the opposing investment and austerity strategies now being advocated for the U.S. government. The hope is to build as simple a model as possible that subsumes the major underlying feedback loops that probably exist in the mental models of proponents of each of these positions. Starting this model was inspired by this Investment vs. Austerity discussion http://www.linkedin.com/groups/Investment-vs-Austerity-How-can-4582801.S.157876413

Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on. This Scenario has Affluence decreasing due to Anthropogenic climate change
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
This Scenario has Affluence decreasing due to Anthropogenic climate change
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
A simple implementation of a Dynamic ISLM model as proposed by Blanchard (1981), and taken from An introduction to economic Dynamics - Shone (1997) - chapter 5. This model might serve as a framework to evaluate economic policies over GDP growth.
A simple implementation of a Dynamic ISLM model as proposed by Blanchard (1981), and taken from An introduction to economic Dynamics - Shone (1997) - chapter 5. This model might serve as a framework to evaluate economic policies over GDP growth.
This model shows the operation of a simple economy with two modifications made to Model 2 -- 1) feedback from production rate to consumption rate and 2) the use of a fractional rate input for calculating consumption rate.   In summary, lower fractional rates of consumption (based on production) resu
This model shows the operation of a simple economy with two modifications made to Model 2 -- 1) feedback from production rate to consumption rate and 2) the use of a fractional rate input for calculating consumption rate. 

In summary, lower fractional rates of consumption (based on production) result in higher levels of Savings.
Structure of model in Nathan Forrester's 1983 MIT Thesis comprising 4 models
Structure of model in Nathan Forrester's 1983 MIT Thesis comprising 4 models