Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
A single resource is used​ with a constant rate and converted into products in use. After a while, these products become unusable because of aging. The recycling of these unusable products is imperfect, thus the amount of not recyclable resource grows (until a better recycling process is invented).
A single resource is used​ with a constant rate and converted into products in use. After a while, these products become unusable because of aging. The recycling of these unusable products is imperfect, thus the amount of not recyclable resource grows (until a better recycling process is invented).
Unfolding story based on Bogdanov's original A Short Course of Economic Science  text  and Pilyugina's 2019  article
Unfolding story based on Bogdanov's original A Short Course of Economic Science text and Pilyugina's 2019 article
10 months ago
Ocean/atmosphere/biosphere model coupled to economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model coupled to economics-based simulations from Y2k on.
7 yesterday
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  This model has one significant difference from Model 4. The  fractional consumption rat
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

This model has one significant difference from Model 4. The fractional consumption rate table serves the purpose of demonstrating the effects of changes in the fractional consumption rate (or the converse the fractional rate of saving) from 100% to less-than 100% to more-than 100%.

It demonstrates dramatically the effects of significant changes in consumption rates.
 ​BACKGROUND:    The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015.      AXIS:          X-Axis  The X-Axis shows the time.
​BACKGROUND:

The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015. 

AXIS:

X-Axis
The X-Axis shows the time. It begins in 2015 in the month of October and continues for 36 consecutive years. 

Y-Axis
There are 2 Y-Axis on this model. The left hand side relates to the price, demand, and supply, while the right hand side solely lists the population.

As you could see, this town has a population of 100,000 residents to-date. The bottom of the model shows a population loop that produces an exponential growth rate of 2.5%. This dynamic and growing city populates approximately 240,000 residents after 36 years.

MODEL

The model consists of 2 folders named: Buyers/Consumers & Suppliers/Producers. This first folder represents the 'Demand'. It includes a buyers growth rate, buyers interest increase and decrease, a price demand and the demand price. The formulas form an exponential rise in demand due to the rapid and continuous increase in population in this new city. As population increases, so does the demand from buyers. 

The second folder conveys the supply of houses. It includes a sophisticated loop of real estate. Residents who own houses in the market decide to sell the home. This becomes the Houses for sale, also known as the 'supply'. Those houses are sold and the sold houses re-enter the market and the loop continues. 

The supply has an inverse relationship with the price. When prices drop, supplies drop because the demand goes up. And when the price goes up, so does the supply. This will represent the growth of new houses in the market. 

PRICE

Note: The price is based on monthly rent rates.

The price is dependant on many variables. Most importantly, the supply and demand. It also includes factors such as expectations & the economic value of the house. I have included a stable, 'good' economic value for all homes as this fictional town is in a stable and growing area.

Price fluctuates throughout the entire simulation, however it also goes up in price. Over the years houses continue to rise in price while they regularly fluctuate. For example, in 2018 (3 years later), the max price for a home was: $4254.7 and min price was: $852.98. On the other hand, in October 2051 (36 years later), the max price was: $14906 and the min price was: $7661. (This is based on the following data: Houses for Sale: 500, Houses that have sold: 100, Houses in the Market: 730).

SLIDERS

There are 3 sliders on the bottom that could be altered. The simulation would react accordingly. The 3 sliders include changeable data on:
- Houses for Sale.
- Houses that have Sold.
- Houses in the Market.


 CLD exposition of Goodwin01 from Steve Keen's August 2019 course on Introduction to Economic Dynamics and Minsky software See  video and powerpoint slides . Based on  IM-2011  Minsky FIH and  IM-168865  MacroEconomics CLDs. See IM-172005 for Simulation

CLD exposition of Goodwin01 from Steve Keen's August 2019 course on Introduction to Economic Dynamics and Minsky software See video and powerpoint slides. Based on IM-2011 Minsky FIH and IM-168865 MacroEconomics CLDs. SeeIM-172005 for Simulation

I made this model to simulate how a companies revenue will change depending on the lifetime of the appliances it manufactures, in combination with the ratio of repair costs and price. It also shows the accumulation of e-waste.
I made this model to simulate how a companies revenue will change depending on the lifetime of the appliances it manufactures, in combination with the ratio of repair costs and price. It also shows the accumulation of e-waste.
 This model bases on the SIR model aims to indicate the relationship between the lockdown policy of the government for combating with COVID-19 and the economic activity in Burnie Tasmania during the pandemic.      This model assumes that more COVID-19 cases will lead to the more serious lockdown pol
This model bases on the SIR model aims to indicate the relationship between the lockdown policy of the government for combating with COVID-19 and the economic activity in Burnie Tasmania during the pandemic. 

This model assumes that more COVID-19 cases will lead to the more serious lockdown policy of the local government, which indirectly affect the economic activities and economic growth. The primary reason is that the lockdown policy force people to stay at home and reduce the chance to work and consume.

The simulation trend of the model is that the economy will keep a steady increase when the serious government policy reduces the COVID-19 spreading speed rate.

 On the occasion of th G20-meeting in Toronto, the German Economics minister Herr Schaüble said that without restoring confidence it would not be possible to get consumer spending and business investment going. Similar remarks were made by David Cameron and Señor Zapatero of Spain. All maintain that

On the occasion of th G20-meeting in Toronto, the German Economics minister Herr Schaüble said that without restoring confidence it would not be possible to get consumer spending and business investment going. Similar remarks were made by David Cameron and Señor Zapatero of Spain. All maintain that confidence is a pre-requisite to get growth going and that, therefore, it was imperative to reduce fiscal deficits. Reducing the fiscal deficit will restore confidence at first. However, reducing the deficit very quickly will introduce a dynamic that may cause the economy to decline - and perhaps depress  consumers demand even further.  It will actually destroy confidence: few businesses are inclined to invest in a shrinking economy. Cutting the deficit too rapidly or too steeply can lead to a confidence trap.

NOTE: A big experiment is now taking place in the UK - the government has cut public spending severely! Will this lead to hardship and, perhaps, social unrest? 

A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
  A system dynamics model to CBA of smart grid project
A system dynamics model to CBA of smart grid project
11 9 months ago