This model shows the operation of a simple economy with two modifications made to Model 2 -- 1) feedback from production rate to consumption rate and 2) the use of a fractional rate input for calculating consumption rate.   In summary, lower fractional rates of consumption (based on production) resu
This model shows the operation of a simple economy with two modifications made to Model 2 -- 1) feedback from production rate to consumption rate and 2) the use of a fractional rate input for calculating consumption rate. 

In summary, lower fractional rates of consumption (based on production) result in higher levels of Savings.
A simple implementation of a Dynamic ISLM model as proposed by Blanchard (1981), and taken from An introduction to economic Dynamics - Shone (1997) - chapter 5. This model might serve as a framework to evaluate economic policies over GDP growth.
A simple implementation of a Dynamic ISLM model as proposed by Blanchard (1981), and taken from An introduction to economic Dynamics - Shone (1997) - chapter 5. This model might serve as a framework to evaluate economic policies over GDP growth.
Implementation of the Solow model of economic growth with labor enhancing technology.   parameters: s, alpha, delta, n, gA variables: Y. K, L, C, A per capita variables: y, k, c, a per capita and technology variables: y~, k~, c~ steady state variables: y~*, k~*, c~* all variables come with relative
Implementation of the Solow model of economic growth with labor enhancing technology.

parameters: s, alpha, delta, n, gA
variables: Y. K, L, C, A
per capita variables: y, k, c, a
per capita and technology variables: y~, k~, c~
steady state variables: y~*, k~*, c~*
all variables come with relative growth rates g

Features:

+steady state from beginning
+one time labor shock
+permanent savings quote shock
+permanent technological growth rate shock

Decreasing steady state variables when starting in steady state are numeric artifacts.
   Model description:     This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the governm

Model description: 

This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the government which will impact on the local infection and economy. 

 

Assumption:

Government policies will reduce the mobility of the population as well as the infection. In addition, economic activities in the tourism and hospitality industry will suffer negative influences from the government measures. However, essential businesses like supermarkets will benefit from the health policies on the contrary.

 

Variables:

Infection rate, recovery rate, death rate, testing rate are the variables to the cases of Covid-19. On the other hand, the number of cases is also a variable to the government policies, which directly influences the number of exposed. 

 

The GDP is dependent on the variables of economic activities. Nonetheless, the government’s lockdown measure has also become the variable to the economic activities. 

 

Interesting insights:

Government policies are effective to curb infection by reducing the number of exposed when the case number is greater than 10. The economy becomes stagnant when the case spikes up but it climbs up again when the number of cases is under control. 

​Farmers use intensive pesticides to harvest cotton, which is harmful to not only the health of the farmers using them, but also our environment as it pollutes rivers and groundwater that negatively interfere with the ecosystem. Even though these farmers know of the health and environmental risks, t
​Farmers use intensive pesticides to harvest cotton, which is harmful to not only the health of the farmers using them, but also our environment as it pollutes rivers and groundwater that negatively interfere with the ecosystem. Even though these farmers know of the health and environmental risks, they still use harmful pesticides to produce cotton, but why is this so. This stock and flow map should explain what impacts farmers to use pesticides to grow cotton despite the risks and explain the cause and effect relationship their use has on the cotton industry and the environment.
According to Clevo Wilson and Clem Tisdell article, "Why farmer continue to use pesticides despite environmental, health and sustainable costs,"

Pesticide use by farmers:
  • "used to reduce yield losses to pests"
  • "avoid economic losses to ensure economical survival"
  • "increase supply market and reduce market prices"
  • "ignorance of sustainable use"
  • "integral part of commercially grow high yielding varieties so without use, high yields may not be sustained"
  • "damage to agriculture land from the use occurs over long period of time so costs may not look serious short term, but reduces economic welfare in long term"
  • "environmental damage: pollutes rivers and groundwater, destroys beneficial predators and interferes with ecosystem overall"
  • "health risks underestimated"
  • "chemical companies selling it have incentive to push their use by advertising and promotion" (1,9).
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems. See also A Prosperous Way Down  website
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems.
See also A Prosperous Way Down website
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
 A clone of the Goodwin cycle  IM-2010  with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment: http://www.jstor.org/

A clone of the Goodwin cycle IM-2010 with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment: http://www.jstor.org/stable/10.2307/4538470.

This model requires development and testing. Please contact the author if you are able to help.

  Introduction:   This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government
Introduction:
This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government policies.

Variables: 
This simulation contains some relevant variables as follow:

Variables in Covid-19 outbreaks: (1) Infection rate, (2) Recovery rate, (3) Death rate, (4) Immunity loss rate

Variables in Government policies: (1) Vaccination rate, (2) Lockdown, (3) Travel ban, (4)Quarantine

Variables in Economy: (1) E-commerce business, (2) Unemployment rate, (3) Economic growth rate.

Assumption:
Government responses would be triggered when reported Covid-19 cases are at least 10.

The government policies reduce the spreading of Covid-19, but they would also limit economic development at the same time due to the negative impact of the policies on the economy is greater than the positive impact.

The increase in reported Covid-19 cases would negatively affect economic growth.

Interesting Insights:
The first finding is that the death number would keep increasing even though the infection rate has decreased, but with stronger government policies (such as implementing a coefficient over 25%), no more death numbers will occur caused by Covid-19.

The second finding is that as government policies limit business activities, with the increasing number of reported Covid-19 cases, economic growth will suffer a severe blow even if e-commerce grows, it can’t make up for this economic loss.
This is a protoype of the bahai high level economic model in accordance to the bahai-economic principles.
This is a protoype of the bahai high level economic model in accordance to the bahai-economic principles.
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
This model analyzes the interaction between climate change mitigation and adaptation in the land use sector using the concept of forest transition as a framework.
This model analyzes the interaction between climate change mitigation and adaptation in the land use sector using the concept of forest transition as a framework.
Eastern oyster growth model calibrated for Long Island Sound Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This
Eastern oyster growth model calibrated for Long Island Sound
Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This model is a workbench for combining ecological and economic components for REServ. Economic component added by Trina Wellman.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse, the fractional rate of saving.) It also, unlike Models 2 & 3, shows the influence Savings has on the  production rate .  In summary, lower rates of co
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse, the fractional rate of saving.) It also, unlike Models 2 & 3, shows the influence Savings has on the production rate.

In summary, lower rates of consumption (based on production) result in higher rates of both production and consumption in the long-run.
Graph representation of Ch3 of their 2007 Monetary Economics book, based on Alvarez and Ehnts 2015  paper  The roads not taken. Also see more complex WIP to successively split sectors at  IM-185550  . See also  essence of MMT IM  for simpler intro
Graph representation of Ch3 of their 2007 Monetary Economics book, based on Alvarez and Ehnts 2015 paper The roads not taken. Also see more complex WIP to successively split sectors at IM-185550 . See also essence of MMT IM for simpler intro