A simple implementation of a Dynamic ISLM model as proposed by Blanchard (1981), and taken from An introduction to economic Dynamics - Shone (1997) - chapter 5. This model might serve as a framework to evaluate economic policies over GDP growth.
A simple implementation of a Dynamic ISLM model as proposed by Blanchard (1981), and taken from An introduction to economic Dynamics - Shone (1997) - chapter 5. This model might serve as a framework to evaluate economic policies over GDP growth.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
WIP Summary of Miller 2015 PCD  article  for the Compelling Case for Prevention Project Scoping Study. See also economic view  IM 69774  (private)  Simplified at  IM-70351 Tool
WIP Summary of Miller 2015 PCD article for the Compelling Case for Prevention Project Scoping Study.
See also economic view IM 69774 (private)
Simplified at IM-70351 Tool
 Clone of Wagdy Samir Macroeconomics work in progress  IM-901  Additions and deletions based on Robert Skidelsky's description of Keynes general THeory from his Biography Vol2 p 549 -571

Clone of Wagdy Samir Macroeconomics work in progress IM-901 Additions and deletions based on Robert Skidelsky's description of Keynes general THeory from his Biography Vol2 p 549 -571

Implementation of the Solow model of economic growth with labor enhancing technology.   parameters: s, alpha, delta, n, gA variables: Y. K, L, C, A per capita variables: y, k, c, a per capita and technology variables: y~, k~, c~ steady state variables: y~*, k~*, c~* all variables come with relative
Implementation of the Solow model of economic growth with labor enhancing technology.

parameters: s, alpha, delta, n, gA
variables: Y. K, L, C, A
per capita variables: y, k, c, a
per capita and technology variables: y~, k~, c~
steady state variables: y~*, k~*, c~*
all variables come with relative growth rates g

Features:

+steady state from beginning
+one time labor shock
+permanent savings quote shock
+permanent technological growth rate shock

Decreasing steady state variables when starting in steady state are numeric artifacts.
HANDY Model of Societal Collapse from Ecological Economics  Paper   see also D Cunha's model at  IM-15085  (Spanish)
HANDY Model of Societal Collapse from Ecological Economics Paper 
see also D Cunha's model at IM-15085 (Spanish)
19 3 months ago
 The complex
model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains
how the COVID-19 outbreak will influence the government policies and economic
impacts. The infected population will be based on how many susceptible, infected,
and recovered individuals in Burnie. It influences

The complex model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains how the COVID-19 outbreak will influence the government policies and economic impacts. The infected population will be based on how many susceptible, infected, and recovered individuals in Burnie. It influences the probability of infected population meeting with susceptible individuals.

The fatality rate will be influenced by the elderly population and pre-existing medical conditions. Even though individuals can recover from COVID-19 disease, some of them will have immunity loss and become part of the susceptible individuals, or they will be diagnosed with long term illnesses (mental and physical). Thus, these variables influence the number of confirmed cases in Burnie and the implementation of government policies.

The government policies depend on the confirmed COVID-19 cases. The government policies include business restrictions, lock down, vaccination and testing rate. These variables have negative impacts on the infection of COVID-19 disease. However, these policies have some negative effects on commercial industry and positive effects on e-commerce and medical industry. These businesses growth rate can influence the economic growth of Burnie with the economic

Most of the variables are adjustable with the slider provided below. They can be adjusted from 0 to 1, which illustrates the percentages associated with the specific variables. They can also be adjusted to three decimal points, i.e., from 0.1 to 0.001.


Assumptions

- The maximum population of Burnie is 20000.
- The maximum number of infected individuals is 100.
- Government policies are triggered when the COVID-19 cases reach 10 or above.
- The government policies include business restrictions, lock down, vaccination and testing rates only. Other policies are not being considered under this model.
- The vaccination policy implemented by the government is compulsory.
- The testing rate is set by the government. The slider should not be changed unless the testing rate is adjusted by the government.
- The fatality rate is influenced by the elderly population and pre-existing medical conditions only. Other factors are not being considered under this model.
- People who recovered from COVID-19 disease will definitely suffer form immunity loss or any other long term illnesses.
- Long term illnesses include mental illnesses and physical illnesses only. Other illnesses are not being considered under this model.
- Economic activities are provided with an assumption value of 1000.
- The higher the number of COVID-19 cases, the more negative impact they have on the economy of Burnie. 


Interesting Insights

A higher recovery rate can decrease the number of COVID-19 cases as well as the probability of infected population meeting with susceptible persons, but it takes longer for the economy to recover compared to a lower recovery rate. A higher recovery rate can generate a larger number of people diagnosed with long term illnesses.

Testing rate triggers multiple variables, such as government policies, positive cases, susceptible and infected individuals. A lower testing rate can decrease the COVID-19 confirmed cases, but it can increase the number of susceptible people. And a higher testing rate can trigger the implementation of government policies, thus decreasing the infection rate. As the testing rate has a strong correlation with the government policies, it can also influence the economy of Burnie. 

​Farmers use intensive pesticides to harvest cotton, which is harmful to not only the health of the farmers using them, but also our environment as it pollutes rivers and groundwater that negatively interfere with the ecosystem. Even though these farmers know of the health and environmental risks, t
​Farmers use intensive pesticides to harvest cotton, which is harmful to not only the health of the farmers using them, but also our environment as it pollutes rivers and groundwater that negatively interfere with the ecosystem. Even though these farmers know of the health and environmental risks, they still use harmful pesticides to produce cotton, but why is this so. This stock and flow map should explain what impacts farmers to use pesticides to grow cotton despite the risks and explain the cause and effect relationship their use has on the cotton industry and the environment.
According to Clevo Wilson and Clem Tisdell article, "Why farmer continue to use pesticides despite environmental, health and sustainable costs,"

Pesticide use by farmers:
  • "used to reduce yield losses to pests"
  • "avoid economic losses to ensure economical survival"
  • "increase supply market and reduce market prices"
  • "ignorance of sustainable use"
  • "integral part of commercially grow high yielding varieties so without use, high yields may not be sustained"
  • "damage to agriculture land from the use occurs over long period of time so costs may not look serious short term, but reduces economic welfare in long term"
  • "environmental damage: pollutes rivers and groundwater, destroys beneficial predators and interferes with ecosystem overall"
  • "health risks underestimated"
  • "chemical companies selling it have incentive to push their use by advertising and promotion" (1,9).
This is an evolving attempt to illustrate the interconnected nature of the economic assets of Roswell - Chaves County
This is an evolving attempt to illustrate the interconnected nature of the economic assets of Roswell - Chaves County
  Format: Given  pre-conditions  when  independent variables(s)  then  dependent variable         Given  Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12))  when  one of these independent variables change  then  how   sensitive   is
Format: Given pre-conditions when independent variables(s) then dependent variable

Given Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12)) when one of these independent variables change then how sensitive is Investment (22) over a 30 year time period (-1,000)

H1: if you Earn more then Investment will last much longer => rejected

H2: if you Spend less then Investment will last much longer => accepted

H3: if your Initial Investment is higher then Investment will last much longer => accepted

H4: if you reduce your Spend when Investments are declining then Investment will last much longer => accepted

Given Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12)) when one of these independent variables are optimised then Investment will last exactly 30 years by minimising the absolute investment gap

H1: if you set an appropriate Spending Base then remaining Investment is 0 => rejected

H2: if you set an appropriate Spending Reduction then remaining Investment is 0 => rejected

Source for investment returns: https://seekingalpha.com/article/3896226-90-year-history-of-capital-market-returns-and-risks
Multiscale view of Combined PH and Economic Views  IM 70763   in preparation for integrating with Prevention Investment Framework  (private) IM
Multiscale view of Combined PH and Economic Views IM 70763  in preparation for integrating with Prevention Investment Framework (private) IM
A simple model for cc adoption which depends on several condions.
A simple model for cc adoption which depends on several condions.
Eastern oyster growth model calibrated for Long Island Sound Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This
Eastern oyster growth model calibrated for Long Island Sound
Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This model is a workbench for combining ecological and economic components for REServ. Economic component added by Trina Wellman.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
Investigations into the relationships responsible for the success and failure of nations. This investigation was prompted after reading numerous references on the subject and perceiving that *Why Nations Fail: The Origins of Power, Prosperity, and Poverty* by Acemoglu and Robinson seem to make a gre
Investigations into the relationships responsible for the success and failure of nations. This investigation was prompted after reading numerous references on the subject and perceiving that *Why Nations Fail: The Origins of Power, Prosperity, and Poverty* by Acemoglu and Robinson seem to make a great deal of sense.

Original model done for The Perspectives Project though recast into Kumu.
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse, the fractional rate of saving.) It also, unlike Models 2 & 3, shows the influence Savings has on the  production rate .  In summary, lower rates of co
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse, the fractional rate of saving.) It also, unlike Models 2 & 3, shows the influence Savings has on the production rate.

In summary, lower rates of consumption (based on production) result in higher rates of both production and consumption in the long-run.
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
Causal loop diagram illustrating a variety of feedback loops influencing the price of oil.
 A clone of the Goodwin cycle  IM-2010  with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment: http://www.jstor.org/

A clone of the Goodwin cycle IM-2010 with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment: http://www.jstor.org/stable/10.2307/4538470.

This model requires development and testing. Please contact the author if you are able to help.

This model analyzes the interaction between climate change mitigation and adaptation in the land use sector using the concept of forest transition as a framework.
This model analyzes the interaction between climate change mitigation and adaptation in the land use sector using the concept of forest transition as a framework.
 No economy can function well without adequate funding and in the absence of finance will eventually fall into recession. Funds (financial assets in the model) are primarily injected through investments. This is certainly true for investments and payments undertaken by the government but also for pr

No economy can function well without adequate funding and in the absence of finance will eventually fall into recession. Funds (financial assets in the model) are primarily injected through investments. This is certainly true for investments and payments undertaken by the government but also for private investments via bank loans. Net exports (i.e.trade surpluses) also represent an injecton of financial assets into the economy. By contrast financial assets are taken out of the economy through taxation, the repayment of bank loans and the running of a negative trade balance. Also, if the population in aggregate decides to save more this has the effect as if money were taken out of the economy. I have deliberately avoided specifying where the funds for treasury payments and public investments come from, as this is controversial. Modern Monetary Theory, for instance, says that these funds are not provided through tax revenue. Austerity can be seen as a process that deliberately diminishes or takes out financial assets from the economy through taxation, restrictions on bank loans or cutbacks in payments and public spending by the government. It is probably useful to look at insights 2740 and 2741 before examining this CLD because they provide the context and purpose for net public spending and investment.