#### Clone of Insect Pest Control

##### Sam Russell

- 5 years 11 months ago

#### Clone of Clone of Isle Royale: Predator Prey Interactions

##### Elena Baglaeva

Experiment with adjusting the initial number of moose and wolves on the island.

This model describes the interactions between wolves, mice, herb on the island.

Wolves eat moose, moose eat herb. Herb has its regeneration coefficient. Wolves and moose have their death and birth coefficient

The goal is to perform an experiment and find out if the current system is stable.

- 5 years 1 week ago

#### Clone of Clone of Isle Royale: Predator Prey Interactions

##### Marat Jilikbaev

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 2 weeks ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Aleksandr

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 2 weeks ago

#### Clone of Insect Pest Control

##### casey

- 6 years 3 months ago

#### Dystopia-1: simple energy system model

##### Barry McMullin

- 11 months 1 week ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Paulo Eduardo Sampaio

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 1 week ago

#### food web

##### Lillian Bitker

- 4 months 2 weeks ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Evgeniy

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 1 week ago

#### MetaCLON - Modelo 1

##### caltamirano

- 3 months 2 days ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Ekaterina Gorokhova

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 1 week ago

#### Clone of Bio 190: BIDE Model With Carrying Capacity

##### Andre Henderson

This is a basic BIDE (birth, immigration, death, emigration) model. Not all parts are implemented, however Birth and Death are.

- 4 years 8 months ago

#### Clone of Royal Island- Resilience

##### Lea Yaman Khatib

Experiment with adjusting the moose birth-rate to simulate Over-shoot followed by environmental recovery

- 3 years 9 months ago

#### Clone of Spring and fall bloom

##### Steve

**Introduction**

Simple model of the spring bloom in coastal temperate coastal waters. Nitrogen is assumed to be the limiting nutrient, so the model is based on N only. The model represents one liter of water. Dissolved inorganic nitrogen (DIN) accumulates in the water column during winter and has reached 250 µmol/L on March 1st where the model starts. At this time the light intensity have just reached the level necessary to initiate the bloom.

**Model setup**

N uptake: Michaelis Menten kinetics with a maximum growth rate that doubles the population each day. Km=5µM.

Grazing: Michaelis Menten kinetics with a maximum daily uptake equal to the N in the population. Km=50µM.

Sloppy eating: 60% of the grazing is wasted to PON

Death: 5% of the zooplankton dies each day

Mineralization: 1% of the PON is mineralized to DIN each day

**Results**

For the first 6 days the phytoplankton grows exponentially and depletes the DIN pool. The peak in phytoplankton is followed by a delayed peak in zooplankton due to its slower growth rate. Slowly the zooplankton graze down the spring bloom and the nitrogen is transformed to the pool of particulate dead organic nitrogen (PON). While this happens the phytoplankton is kept low by the still high zooplankton which allow the DIN pool to increase from day 25 to day 55. Eventually the phytoplankton escapes the top down control and we see a secondary bloom based on regenerated DIN.

- 3 years 6 months ago

#### Clone of Predator Prey

##### deo

A simulation illustrating simple predator prey dynamics. You have two populations.

- 3 years 7 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Rolando Jaime Acosta Nunez

Experiment with adjusting the initial number of moose and wolves on the island.

- 3 years 7 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Victoria Sukhopluyeva

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 1 week ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Denis

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 2 weeks ago

#### Clone of Isle Royale: Predator Prey Interactions

##### kerinasu

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 8 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### knotennase

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 8 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Gulyaeva Kseniya

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 1 week ago

#### Clone of Predator Prey

##### Ciro

A simulation illustrating simple predator prey dynamics. You have two populations.

- 2 years 5 months ago

#### Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")

##### Celil Ekici

**Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system. For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system. The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined. Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed. Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:**

1. The prey population finds ample food at all times.2. The food supply of the predator population depends entirely on the size of the prey population.3. The rate of change of population is proportional to its size.4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.5. Predators have limitless appetite.As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

**Prey**

When multiplied out, the prey equation becomesdx/dt = αx - βxy The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

PredatorsThe predator equation becomes

dy/dt = -

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.

- 1 year 8 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Lisa Keßler

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 8 months ago