This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
Common Timothy is an invasive grass species.  Alpine Timothy is the native grass species in Yellowstone.  I calculated the carrying capacity of the grasses by converting acres, square feet, pounds per square feet and seeds per pound.  There is a higher birth rate and lower death rate for the common
Common Timothy is an invasive grass species.  Alpine Timothy is the native grass species in Yellowstone.  I calculated the carrying capacity of the grasses by converting acres, square feet, pounds per square feet and seeds per pound.  There is a higher birth rate and lower death rate for the common timothy because the grass is taking over the area due to a lack of wildlife predators.
 A simulation illustrating how the size of a fish population affects the number of fish caught and vice versa.

A simulation illustrating how the size of a fish population affects the number of fish caught and vice versa.

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

Thanks to Jacob Englert for the model if-then-else structure.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
 This is a basic model for use with our lab section.  The full BIDE options.

This is a basic model for use with our lab section.  The full BIDE options.

 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

It seems that I've made a mess of mine! But it's a mess with a purpose....  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
It seems that I've made a mess of mine! But it's a mess with a purpose....

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
 A simulation illustrating simple predator prey dynamics. You have two populations.

A simulation illustrating simple predator prey dynamics. You have two populations.

  Физический смысл уравнений    Модель Лотки-Вольтерры делает ряд предположений об окружающей среде и эволюции популяций хищников и жертв:         1. Хищная популяция всегда находит достаточно пищи.  2. Продовольственная обеспеченность популяции хищника полностью зависит от размера популяции жертвы.
Физический смысл уравнений
Модель Лотки-Вольтерры делает ряд предположений об окружающей среде и эволюции популяций хищников и жертв:

1. Хищная популяция всегда находит достаточно пищи.
2. Продовольственная обеспеченность популяции хищника полностью зависит от размера популяции жертвы.
3. Скорость изменения численности населения пропорциональна его численности.
4. В ходе этого процесса окружающая среда не меняется в пользу одного вида, и генетическая адаптация не имеет существенного значения.
5. Хищники обладают безграничным аппетитом.
Поскольку используются дифференциальные уравнения, решение является детерминированным и непрерывным. Это, в свою очередь, означает, что поколения как хищника, так и жертвы постоянно пересекаются.

Добыча
Когда умножается, уравнение добычи становится
dx/dt = αx - βxy
  Предполагается, что добыча имеет неограниченный запас пищи и размножается экспоненциально, если только она не подвержена хищничеству; этот экспоненциальный рост представлен в приведенном выше уравнении термином  αx. Предполагается, что скорость хищничества на добыче пропорциональна скорости, с которой встречаются хищники и добыча; это представлено выше в виде βxy.Если либо x, либо y равно нулю, то хищничества быть не может.
С помощью этих двух терминов приведенное выше уравнение можно интерпретировать следующим образом: изменение численности добычи определяется ее собственным ростом минус скорость, с которой она охотится.
ХищникиУравнение хищника становится

dy/dt =  - 

В этом уравнении,  представляет рост популяции хищника. (Обратите внимание на сходство со скоростью хищничества; однако используется другая константа, поскольку скорость роста популяции хищника не обязательно равна скорости, с которой он потребляет добычу).  представляет собой уровень потерь хищников вследствие естественной смерти или эмиграции; это приводит к экспоненциальному распаду в отсутствие добычи.


Следовательно, уравнение выражает изменение популяции хищников как рост, подпитываемый запасом пищи, минус естественная смерть.


  ​Predator-prey
models are the building masses of the bio-and environments as bio
masses are become out of their asset masses. Species contend, advance and
scatter essentially to look for assets to support their battle for their very
presence. Contingent upon their particular settings of uses, they

​Predator-prey models are the building masses of the bio-and environments as bio masses are become out of their asset masses. Species contend, advance and scatter essentially to look for assets to support their battle for their very presence. Contingent upon their particular settings of uses, they can take the types of asset resource-consumer, plant-herbivore, parasite-have, tumor cells- immune structure, vulnerable irresistible collaborations, and so on. They manage the general misfortune win connections and thus may have applications outside of biological systems. At the point when focused connections are painstakingly inspected, they are regularly in actuality a few types of predator-prey communication in simulation. 

 Looking at Lotka-Volterra Model:

The well known Italian mathematician Vito Volterra proposed a differential condition model to clarify the watched increment in predator fish in the Adriatic Sea during World War I. Simultaneously in the United States, the conditions contemplated by Volterra were determined freely by Alfred Lotka (1925) to portray a theoretical synthetic response wherein the concoction fixations waver. The Lotka-Volterra model is the least complex model of predator-prey communications. It depends on direct per capita development rates, which are composed as f=b−py and g=rx−d. 

A detailed explanation of the parameters:

  • The parameter b is the development rate of species x (the prey) without communication with species y (the predators). Prey numbers are reduced by these collaborations: The per capita development rate diminishes (here directly) with expanding y, conceivably getting to be negative. 
  • The parameter p estimates the effect of predation on x˙/x. 
  • The parameter d is the death rate of species y without connection with species x. 
  • The term rx means the net rate of development of the predator population in light of the size of the prey population.

Reference:

http://www.scholarpedia.org/article/Predator-prey_model

 

   ​The probability density function (PDF) of the normal distribution or Bell Curve of Normal or Gaussian Distribution is the mean or expectation of the distribution (and also its median and mode).        The parameter is its standard deviation with its variance then, A random variable with a Gaussi
​The probability density function (PDF) of the normal distribution or Bell Curve of Normal or Gaussian Distribution is the mean or expectation of the distribution (and also its median and mode). 

The parameter is its standard deviation with its variance then, A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.
However, those who enjoy upskirts are called deviants and have a variable distribution :) 

A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.

If mu = 0 and sigma = 1

If the Higher Education Numbers Are Increased then the group decision making ability of society would be raised above that of a middle teenager as it is now
BUT 
Governments can control children by using bad parenting techniques, pandering to the pleasure principle, so they will make higher education more and more difficult as they are doing


85% of the population has a qualification level equal or below a 12th grader, 17 year old ... the chance of finding someone with any sense is low (~1 in 6) and the outcome of them being chosen by those who are uneducated in the policies they are to decide is even more rare !!!

Experience means little if you don't have enough brain to analyse it

Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

Democracy:  Where a group allows the decision ability of a teenager to decide on a choice of mis-representatives who are unqualified to make judgement on social policies that affect the lives of millions.
The kind of children who would vote for King Kong who can hold a girl in one hand and swat fighter jets out of teh sky off the tallest building, doesn't have a brain cell or thought to call his own but has a nice smile and offers little girls sweets.


updated 16/3/2020 from 4 years 3 months ago
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of:  'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).   Translated to English (by Lisa Belyea)
Clone of: 
'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).
Translated to English (by Lisa Belyea)
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W