Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Economy

Clone of LIMITS TO ECONOMIC GROWTH AND PROMINENT NEGATIVE FEEDBACK LOOPS

ismail kuris
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

Limits To Growth Energy Economy Global Warming

  • 1 year 4 months ago

Clone of Energy transition to lower EROI sources (v1.0)

Hercules Bothma
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).

Energy EROI Economy

  • 2 years 9 months ago

Clone of Microeconomic Savings can convert to Macroeconomic Costs

Julie Maurer
Microeconomic measures can produce counterintuitive 'emergent' effects at the macro or systemic level. The commendable act of saving money by individuals during uncertain economic times has the perverse macroeconomic effect of making a recession  worse: in aggregate there will be less money available for spending, suppressing demand for goods and services. Economists call this effect 'the paradox of thrift'. Similarly, logical efforts by companies in such conditions to reduce their wage bill or their postponement of investment decisions will reduce spending in the economy  and deepen the economic downturn.

What can be done to counteract this harmful dynamic? The missing spending can be replaced by government spending: governments have it within their power to effectively counter economic downturns!

Economy Emergent Phenomena Fiscal Spending Paradox Of Thrift

  • 3 years 1 month ago

Clone of Energy transition to lower EROI sources (v1.0)

David Bonin
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).

Energy EROI Economy

  • 1 year 8 months ago

Clone of IS GOLD A SAFE INVESTMENT

ismail kuris
The systemic problem is to understand what influence the gold price?

Many articles say that the gold price is manipulated and some analysts predict that the bubble will burst. (1)

We think that understanding how gold can be influenced by different factors is an interesting research topic. The variation of the gold price is a real-world problem which evaluates through the interaction of a group of different elements.

It seems that the gold price is a very complex problem understanding. Of course everybody has his own thinking about the problem according to his own filter.

But this approach is most of the time not valuable because there is not a full view of all the variables and their link. In a context of a growing demand and a constant supply, be able to determine if gold price will continue to increase and if this asset will represent a safe investment for the new decade.

In September 2011, gold price surged a record, $1,274,75 an ounce. According to the Commodities guru George Soros “gold was the ultimate bubble" and was no longer a safe investment.

On the other hand, the research conducts by metal consultant GFMS predicted that gold will hit a new record of $1,300 an ounce. (2)

Who was right? Both of them. 

This example illustrates how complex is the problem.

At the time of this research the price of gold is $1,316,79 an ounce.

Wealthy persons are concerned by preserving their fortune, they also look to maximise their wealth and to keep it safe. Many options are available to investors, despite buillion is a popular asset on a long-term portfolio, nowadays is it gold a safe investment? That is a good question. Also understanding the impact of gold on the economy and how it is link to poverty might be interesting. To analyze an issue, one must first define it.

In order to get a better understanding of the gold price we will model this complex problem. Our goal is to visualize the interconnection of elements and be able to identify feedback loops with the aim to understand the complexity of the problem.

We will analyse different documents from various sources, underline variables and identify their relationships over time.

 


 (1) https://www.moneymetals.com/news/2017/04/28/who-controls-gold-price-001058

 

 (2) https://www.bullionbypost.co.uk/index/gold-investment/is-gold-a-safe-investment/

 

Finance Gold Economy USA FED

  • 1 year 4 months ago

Clone of LIMITS TO ECONOMIC GROWTH AND PROMINENT NEGATIVE FEEDBACK LOOPS

Muhammad Norsham
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

Limits To Growth Energy Economy Global Warming

  • 1 year 6 months ago

Clone of Burnie COVID-19 outbreak demo model version 2

Mika yang
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover
AssumptionsGovt policy reduces infection and economic growth in the same way.
Govt policy is trigger when reported COVID-19 case are 10 or less.
A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights
Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




COVID-19 Burnie Tasmania BMA708 Economy

  • 3 months 1 week ago

Clone of Burnie COVID-19 outbreak demo model

LU JIN
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover
AssumptionsGovt policy reduces infection and economic growth in the same way.
Govt policy is trigger when reported COVID-19 case are 10 or less.
Interesting insights
Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  




COVID-19 Burnie Tasmania BMA708 Economy

  • 3 months 2 weeks ago

Clone of THE ILLUSION OF A U.S. PUBLIC DEBT MOUNTAIN.

Geoff McDonnell
Neoliberalism uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’. In fact, the money the government spends into the economy in excess of the taxes is an income, a benefit for the private sector. When the government issues bonds, the money the private sector uses to buy them via banks comes from a residual cushion of dollars that the government already spent into the economy but has not yet taxed back.  If this were not the case, if the government had taxed back all the money it spent into the economy, then the economy could not function. There would be no dollars in the economy, since the government is the sole supplier of U.S. dollars! In the doted rectangle in the graph you can see that the dollars paid to the government for bonds sits in a dollar asset account. When the government issues bonds it simply provides the public and institutions with a desirable money substitute that pays interest i.e. Treasury bonds. It is a swap of one kind of financial asset for another. To register this swap the government debits the dollar asset account and credits the bond account.  When the time comes to redeem (take back) the bonds, all the government does is revers the swap, and that’s all!  When you look at the total amount of finacial assets in the private sector,  these remain constant at $ 25 BN  after the payment of $ 5 BN taxes. This implies that  no lending of financial assets of the private sector to the government has taken place during the swap operation. The money was always there. The debt mountain is an illusion!

Finance Economy

  • 1 year 1 week ago

Clone of Energy transition to lower EROI sources (v2.5)

Harald Desing
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.

Energy EROI Economy

  • 4 months 1 week ago

Clone of Burnie COVID-19 outbreak demo model version 2

Mika yang
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover
AssumptionsGovt policy reduces infection and economic growth in the same way.
Govt policy is trigger when reported COVID-19 case are 10 or less.
A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights
Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




COVID-19 Burnie Tasmania BMA708 Economy

  • 3 months 1 week ago

Clone of Burnie COVID-19 outbreak demo model version 2

Zijing Zeng
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover
AssumptionsGovt policy reduces infection and economic growth in the same way.
Govt policy is trigger when reported COVID-19 case are 10 or less.
A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights
Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




COVID-19 Burnie Tasmania BMA708 Economy

  • 3 months 6 days ago

Clone of Model of Covid-19 Outbreak in Burnie, Tasmania (Yue Xiang 512994)

Xuexiao Zhang
Simple epidemiological model for Burnie, TasmaniaSIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).

COVID-19 Coronavirus SIR Model Government Economy Burnie Tasmania UTAS BMA708

  • 3 months 1 week ago

Pages