Introduction; 
 This model shows COVID-19 outbreak in Burnie have some impact for local economy situation and government policy. The main government policy is lockdown during the spreading period which can help reduce the infected rate, and also increase the test scale to help susceptible confirm t

Introduction;

This model shows COVID-19 outbreak in Burnie have some impact for local economy situation and government policy. The main government policy is lockdown during the spreading period which can help reduce the infected rate, and also increase the test scale to help susceptible confirm their situation.


Variables;

Infection rate, Death rate, Recovery rate, test rate, susceptible, immunity rate, economy growth rate

These variables are influenced by different situation.


When cases over 10, government will implement lockdown policy.


Conclusion;

When cases increase too much , they will influence the economic situation.


Interesting insights:

If the recover rate is higher, more people will recover from the disease. It seems to be a positive sign. However, it would lead to a higher number of recovered people and more susceptible. As a result, there would be more cases, and would have a negative impact on the economic growth. 

国連が公表している人口の将来推計とOECDが公表している各種経済統計を参考にして、2000年から2100年までの人口・経済見通しを作成するためのダイナミクスモデル。     ①人口:年少(0-14歳)・再生産年齢人口(15-49歳)・後期生産年齢人口(50-64歳)・老年人口(65歳以上)にグループ分けし、出生数(再生産年齢人口×出生率)と死亡数(年代別死亡率×年代別人口の合計)を算出して総人口を推計     ②経済:2000年のGDPをストックとして、コブ=ダグラス型関数に基づき労働力人口(15歳以上人口×労働参加率)と資本ストック(総固定資本形成)および全要素生産性の成長率をフローとし、購
国連が公表している人口の将来推計とOECDが公表している各種経済統計を参考にして、2000年から2100年までの人口・経済見通しを作成するためのダイナミクスモデル。

①人口:年少(0-14歳)・再生産年齢人口(15-49歳)・後期生産年齢人口(50-64歳)・老年人口(65歳以上)にグループ分けし、出生数(再生産年齢人口×出生率)と死亡数(年代別死亡率×年代別人口の合計)を算出して総人口を推計

②経済:2000年のGDPをストックとして、コブ=ダグラス型関数に基づき労働力人口(15歳以上人口×労働参加率)と資本ストック(総固定資本形成)および全要素生産性の成長率をフローとし、購買力平価レートの変化率も加味して将来のGDP(購買力平価換算)を算出

現状投影シナリオ:2000年から2100年までに制度や前提条件の極端な変更はなく、現状のトレンドが続くと想定される場合
 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

this is economy as it is in reality.
this is economy as it is in reality.
 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.    According to the analysis, logging does not reduce tourism income. Wi
This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.

According to the analysis, logging does not reduce tourism income. With the increase of number of bike guide, tourism income will increase as well. Also, in forest industry, timber income is higher than the harvest spending which means the industry always gain profits from logging. Therefore, the main concern is that the logging should be balanced between the Mountain Tourism and the forest industry.
C8 Article through the Economy lense
C8 Article through the Economy lense
A model situmalte the relationship between moutain bikes and logging industry in Derby, Tasmania, It explains more when the number of visitors increases or decreses.    How the model works  The left side shows when the number of travellers increase, the income from travellers rental of bike and stay
A model situmalte the relationship between moutain bikes and logging industry in Derby, Tasmania, It explains more when the number of visitors increases or decreses. 

How the model works
The left side shows when the number of travellers increase, the income from travellers rental of bike and stay of hotel increase simultaneously. However, there is a capacity for both parking lots and hotel venues, which means that the top ability of hospitality of Derby. The right side shows the logging industry of Derby and income from logging. It has a impact on how travellers would value Derby moutain.

Insights
As the number of travellers increase, it increases the total income of Derby, and in return, the local government will re-revest in Derby Moutain and will also maintain the forrestry logging industry. 
Update 24 Feburary 2016 (v3.1): This version has biomass, hydro and nuclear continuing at pre-transition maxima, rather than increasing. The combined emplacement rate cap for wind and PV is set at a default value of 5000 GW/year.  Major update 12 December 2015 (v3.0): This new version of the model o
Update 24 Feburary 2016 (v3.1): This version has biomass, hydro and nuclear continuing at pre-transition maxima, rather than increasing. The combined emplacement rate cap for wind and PV is set at a default value of 5000 GW/year.

Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the future supply curve also set directly (but using a separate input array to the historical data). For coal and natural gas fired electricity, this also requires that the simple, direct-input EROI method be used (i.e. same as for coal and NG heating, and petroleum transport fuels).

Note that this new version of the model no longer provides a historical view of the emplacement rates for energy supply sources other than wind and PV, and therefore no longer allows comparison of required emplacement rates for wind and PV with incumbent energy sources. Output data relating to this is available in model version v2.5 (see link below), for the specific transition duration built into that version of the model.

The previous version of the model (version 2.5) is available here.

The original "standard run" version of the model (v1.0) is available here.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

  Overview     This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.      Model   W  ork     The tourism industry is represented on the model's left side, and the logging industry is on the right

Overview

This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.

 

Model Work

The tourism industry is represented on the model's left side, and the logging industry is on the right side. Interactions between these two industries generate tax revenues. Logging and tourism have different growth rates regarding people working/consuming. The initial values of these two industries in the model are not fixed but increase yearly due to inflation or economic growth.

 

Detail Insights

From the perspective of tourism, as the number of tourists keeps growing, the number of people who choose to ride in Derby City also gradually increases. And the people who ride rate the ride. The negative feedback feeds back into the cycling population. Similarly, positive cycling reviews lead to more customer visits. And all the customers will create a revenue through tourism, and a certain proportion of the income will become tourism tax.

From a logging perspective, it is very similar to the tourism industry. As the number of people working in the industry is forecast to increase, the industry's overall size is predicted to grow. And as the industry's size continues to rise, the taxes on the logging industry will also continue to rise. Since logging is an industry, the tax contribution will be more significant than the tourism excise tax.

 

This model assumption is illustrated below:

1. The amount of tax reflects the level of industrial development.

2. The goal of reducing carbon emissions lets us always pay attention to the environmental damage caused by the logging industry.

3. The government's regulatory goal is to increase overall income while ensuring the environment.

4. Logging will lead to environmental damage, which will decrease the number of tourists.

 

This model is based on tourism tax revenue versus logging tax revenue. Tourism tax revenue is more incredible than logging tax revenue, indicating a better environment. As a result of government policy, the logging industry will be heavily developed in the short term. Growth in the logging industry will increase by 40%. A growth rate of 0.8 and 0.6 of the original is obtained when logging taxes are 2 and 4 times higher than tourism taxes.

 

Furthermore, tourism tax and logging tax also act on the positive rate, which is the probability that customers give a positive evaluation. The over-development of the logging industry will lead to the destruction of environmental resources and further affect the tourism industry. The logging tax will also affect the tourism Ride Rate, which is the probability that all tourism customers will choose Derby city.

 

This model more accurately reflects logging and tourism's natural growth and ties the two industries together environmentally. Two ways of development are evident in the two industries. Compared to tourism, logging shows an upward spiral influenced by government policies. Government attitudes also affect tourism revenue, but more by the logging industry. 

 Model in support of an article being written about the relationship between investment and austerity. See  Version 2  See also: *  Inv vs Aust Sim [IM-2736]  *  Inv & Output 1 [IM-2740]  *  Inv & Output 2 [IM-2741]   @ LinkedIn ,  Twitter ,  YouTube

Model in support of an article being written about the relationship between investment and austerity. See Version 2

See also:
Inv vs Aust Sim [IM-2736]
Inv & Output 1 [IM-2740]
Inv & Output 2 [IM-2741]
  Simulates personal accounts over time.    Model based on the  Sustainable Money System . For a short introduction, read this  short article  or watch the  TEDx talk .
Simulates personal accounts over time.

Model based on the Sustainable Money System.
For a short introduction, read this short article or watch the TEDx talk.
 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.