Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
This is a model that will simulate a medieval fantasy population with regular trades
This is a model that will simulate a medieval fantasy population with regular trades
 Model in support of an article being written about the relationship between investment and austerity. See  Version 2  See also: *  Inv vs Aust Sim [IM-2736]  *  Inv & Output 1 [IM-2740]  *  Inv & Output 2 [IM-2741]

Model in support of an article being written about the relationship between investment and austerity. See Version 2

See also:
Inv vs Aust Sim [IM-2736]
Inv & Output 1 [IM-2740]
Inv & Output 2 [IM-2741]


Overview This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.    How the model works  The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to incre
Overview
This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.

How the model works
The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to increased visitors using the forest of mountain biking. Accompanying variables effect the tourism income that flows from use of the bike trails.
On the right side, the forest flow begins with tree growth then a demand for timber leading to the logging production. The sales from the logging then lead to the forestry income.
The model works by identifying how the different variables interact with both mountain biking and logging. As illustrated there are variables that have a shared effect such as scenery and adventure and entertainment.

Variables
The variables are essential in understanding what drives the flow within the model. For example mountain biking demand is dependent on positive word mouth which in turn is dependent on scenery. This is an important factor as logging has a negative impact on how the scenery changes as logging deteriorates the landscape and therefore effects positive word of mouth.
By establishing variables and their relationships with each other, the model highlights exactly how mountain biking and forestry logging effect each other and the income it supports.

Interesting Insights
The model suggests that though there is some impact from logging, tourism still prospers in spite of negative impacts to the scenery with tourism increasing substantially over forestry income. There is also a point at which the visitor population increases exponentially at which most other variables including adventure and entertainment also increase in result. The model suggests that it may be possible for logging and mountain biking to happen simultaneously without negatively impacting on the tourism income.
The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (especia
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (especially when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. The falling ratio 'EROI' (Energy Return on Energy Invested ) provides yet another warning that we can no longer rely on fossil fuels to power our economies. In 1940 it took the energy of only one barrel of oil to extract 100. Today the energy of 1 barrel of oil will yield only 15. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. An EROI of 1:1 means that it takes the energy of one barrel of oil to extract one barrel of oil - oil production would simply stop! 


A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
 ​In a recent report, the World Economic Forum
considered that the use of robots in economic activity will cause far more job
losses in the near future than there will be new ones created. Every economic
sector will be affected. The CLD tries to illustrate the dynamic effects of
replacing human work
​In a recent report, the World Economic Forum considered that the use of robots in economic activity will cause far more job losses in the near future than there will be new ones created. Every economic sector will be affected. The CLD tries to illustrate the dynamic effects of replacing human workers with robots. This  dynamic  indicates that if there is no replacement of the  income forgone by the laid off workers, then the economy will soon grind to a halt. To avoid disaster, there must be enough money in circulation, not parked in off-shore investments, to permit the purchase of all the goods and services produced by robots. The challenge for the government is to make sure that this is  case.  

  Model of Covid-19 Outbreak in Burnie, Tasmania    When reported COVID-19 cases begin to show a rapid increase, the government will initiate control policies to deal with the spread.As the number of people tested increases and measures such as isolation and medical assistance are implemented, the n

Model of Covid-19 Outbreak in Burnie, Tasmania

When reported COVID-19 cases begin to show a rapid increase, the government will initiate control policies to deal with the spread.As the number of people tested increases and measures such as isolation and medical assistance are implemented, the number of people infected will decline rapidly.Therefore, the government's policy is to reduce and eliminate sources of transmission by increasing the number of tests and initiating control measures.At the same time, it also shows the negative impact of economic growth, which according to the model will stop in the next 20 weeks.

Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
   Explanation of the Model    This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  
When people talk about a government deficit, they forget
that this is only one side of the ledger. On the other is a corresponding non-government
SURPLUS. The money the government spends is not lost but shows up in the private
sector as income. When one talks only of the deficit then one can underst
When people talk about a government deficit, they forget that this is only one side of the ledger. On the other is a corresponding non-government SURPLUS. The money the government spends is not lost but shows up in the private sector as income. When one talks only of the deficit then one can understand that many think it should be reduced or even converted into a surplus, but reducing the government deficit reduces private sector income and a government surplus forces a deficit on the private sector with a potentially devastating effect on private sector wealth and economic activity.  Unless the economy is overheating, government deficits are usually healthy. For countries that run traditionally a trade deficit, such as the US they are necessary to maintain economic activity. Consider this fact: for almost all of past 40 years the US and the UK have run deficits without any harmful effects!

This video by professor Stephanie Kelton contains evidence that supports the modle.

https://www.youtube.com/watch?v=g6rlprwQB5E

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
Neoliberalism
uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’.
In fact, the money the government spends into the economy in excess of the
taxes is an income, a benefit for the private sector. Whe
Neoliberalism uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’. In fact, the money the government spends into the economy in excess of the taxes is an income, a benefit for the private sector. When the government issues bonds, the money the private sector uses to buy them via banks comes from a residual cushion of dollars that the government already spent into the economy but has not yet taxed back.  If this were not the case, if the government had taxed back all the money it spent into the economy, then the economy could not function. There would be no dollars in the economy, since the government is the sole supplier of U.S. dollars! In the doted rectangle in the graph you can see that the dollars paid to the government for bonds sits in a dollar asset account. When the government issues bonds it simply provides the public and institutions with a desirable money substitute that pays interest i.e. Treasury bonds. It is a swap of one kind of financial asset for another. To register this swap the government debits the dollar asset account and credits the bond account.  When the time comes to redeem (take back) the bonds, all the government does is revers the swap, and that’s all!  When you look at the total amount of finacial assets in the private sector,  these remain constant at $ 25 BN  after the payment of $ 5 BN taxes. This implies that  no lending of financial assets of the private sector to the government has taken place during the swap operation. The money was always there. The debt mountain is an illusion!
The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (even
wh
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. 

PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Oops! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.

https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf

From Warren C. Sanderson in Population - Development - Environment, Wolfgang Lutz (Ed.), 1994, Springer.    More readable equations in Milik et al. Environemental Modeling and Assessment 1(1996)3-17.     Additional informations in Sanderson 1995: http://dx.doi.org/10.1080/08898489509525405      Vens
From Warren C. Sanderson in Population - Development - Environment, Wolfgang Lutz (Ed.), 1994, Springer.

More readable equations in Milik et al. Environemental Modeling and Assessment 1(1996)3-17.

Additional informations in Sanderson 1995: http://dx.doi.org/10.1080/08898489509525405

Vensim graphical representation from "Meta-SD blog", Tom Fiddaman.


Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
   Introduction    This model simulates the COVID-19 outbreaks in Burnie, the government reactions, as well as the economic impact. The government's strategy is based on the number of COVID-19 cases reported and testing rates and recovered.       Assumptions    In the same trend that government poli
Introduction
This model simulates the COVID-19 outbreaks in Burnie, the government reactions, as well as the economic impact. The government's strategy is based on the number of COVID-19 cases reported and testing rates and recovered.

Assumptions
In the same trend that government policy decreases infection, it also reduces economic growth.
When there are ten or fewer COVID-19 cases reported, government policy is triggered.
The economy suffers as a result of an increase in COVID-19 cases.

Interesting insights
The higher testing rates appear to result in a more quick government response, resulting in fewer infectious cases. However, it has a negative influence on the economy.
 Model supporting research of investment vs. austerity implications. Please refer to  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to Modern Money & Public Purpose Video.

 Wealth can be seen as the factories,
infrastructure, goods and services the population of a nation dispose of. According
to Tim Garrett,  a scientist who looks at
the economy from the perspective of physics, it is existing wealth that generates
economic activity and growth. This growth demands the

Wealth can be seen as the factories, infrastructure, goods and services the population of a nation dispose of. According to Tim Garrett,  a scientist who looks at the economy from the perspective of physics, it is existing wealth that generates economic activity and growth. This growth demands the use of energy as no activity can take place without its use. He also points out that the use of this energy unavoidably  leads to concentrations of CO2 in the atmosphere.  All this, Tim Garrett says,  follows from the second law of thermodynamics.  If wealth decreases then so does economic activity and growth. The CLD tries to illustrate how wealth, ironically, now generates the conditions and feedback loops  that  may cause it to decline. The consequences are  inevitably economic  stagnation (or secular recession?). 

You can read about the connection Tim Garrett makes between 'Wealth, Economic Growth, Energy and CO2  Emissions' simply by Googling 'Tim Garrett and Economy'.

A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" value
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking