Clone of Investment vs Austerity v3
Dante Dias Torio
Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.
- 4 years 7 months ago
Clone of Public interest in engineering
Cheryl
- 7 years 6 months ago
Clone of Energy and Economic Activity
Taylor Nicole Koontz
An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist.
PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Ooop! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.
https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf
- 4 years 11 months ago
Clone of Recycling and Waste Treatment in Vancouver
Arman Mojtabavi
- 1 year 10 months ago
Clone of Energy and Economic Activity
chihab houam
An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist.
PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Oops! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.
https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf
- 2 years 10 months ago
Clone of Energy transition to lower EROI sources (v2.5)
leimeng zhang
Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.
Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.
Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.
Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.
Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.
Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.
**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.
Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**
The original "standard run" version of the model is available here.
- 4 years 2 months ago
Clone of Investment vs Austerity v3
Lukas Hartwig
Model supporting research of investment vs. austerity implications. Please refer to Modern Money & Public Purpose Video.
- 2 years 2 weeks ago
Clone of Energy and Economic Activity
chihab houam
An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist.
PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Oops! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.
https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf
- 2 years 10 months ago
Clone of Clone of Factors affecting Brazilian soy export growth
john nehme
- 2 years 4 months ago
Clone of Bank Deposit Money Multiplier
Marco
- 4 years 4 months ago
Clone of Bank Deposit Money Multiplier
Zahra Behnejadi
- 3 years 11 months ago
Clone of Investment vs Austerity v3
Daniel Fish
Model supporting research of investment vs. austerity implications. Please refer to Modern Money & Public Purpose Video.
Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
- 2 years 8 months ago
Clone of Simple Economic Growth Model
Pavan Srinath
- 3 years 11 months ago
Clone of Sustainability in Fisheries Finale
ComPAIR Research
- 3 years 6 months ago
Compound Interest Rate
Muhammad Firas
- 2 months 1 week ago
Clone of Energy transition to lower EROI sources (v3.1)
Noel J Sacasa
Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the future supply curve also set directly (but using a separate input array to the historical data). For coal and natural gas fired electricity, this also requires that the simple, direct-input EROI method be used (i.e. same as for coal and NG heating, and petroleum transport fuels).
Note that this new version of the model no longer provides a historical view of the emplacement rates for energy supply sources other than wind and PV, and therefore no longer allows comparison of required emplacement rates for wind and PV with incumbent energy sources. Output data relating to this is available in model version v2.5 (see link below), for the specific transition duration built into that version of the model.
The previous version of the model (version 2.5) is available here.
The original "standard run" version of the model (v1.0) is available here.
- 3 years 10 months ago
Clone of Energy transition to lower EROI sources (v2.5)
Mehran Ali
Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.
Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.
Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.
Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.
Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.
Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.
**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.
Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**
The original "standard run" version of the model is available here.
- 3 years 2 months ago
Clone of Elements of Human Security
Pascale Younes
- 2 years 4 months ago
Clone of Energy and Economic Activity
Luis Koc
An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist.
PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Oops! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.
https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf
- 3 years 6 months ago
Clone of How many jobless graduates in the UK future scenarios
VMV
- 3 years 11 months ago
Clone of Clone of Elements of Human Security
Alexandra el khoury
- 2 years 4 months ago
Clone of Circular Money
Bruno De Cleen
- 3 years 8 months ago
Clone of Energy and Economic Activity
Srinivas Nalla
An important fact about COAL, GAS and OIL (especially when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. The falling ratio 'EROI' (Energy Return on Energy Invested ) provides yet another warning that we can no longer rely on fossil fuels to power our economies. In 1940 it took the energy of only one barrel of oil to extract 100. Today the energy of 1 barrel of oil will yield only 15. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. An EROI of 1:1 means that it takes the energy of one barrel of oil to extract one barrel of oil - oil production would simply stop!
- 1 year 3 months ago
Clone of Clone of Bank Deposit Money Multiplier
Bryan Angkawidjaya
- 2 years 3 months ago