Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Economy

BMA 708, Assessment Tast 3: Complex System, Burnie COVID-19 outbreak, Diprina Shakya-519673

Diprina Shakya
Explanation of the ModelThis is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 
AssumptionsLockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate. 
Interesting Insight There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. In contrast, lower testing rates increase the death rate and cases. 
Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  

COVID-19 Burnie Tasmania COVID-19 Outbreak Government Policy Economy BMA708

  • 8 months 4 hours ago

Model of Covid-19 outbreaks at Burnie (Yingchao Yang,503757)

Mika yang
This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.
This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at the area. These policy can indirectly affect the local economy in many different way. At the same time, strict policy may be essential for combating Covid-19.
From the simulation of the model, we can clearly see that the economy of Burine will be steady increase when government successfully reduces the COVID-19 cased and make it spreading slower.
Interesting finding: In this pandemic, the testing rate and the recovery rate are important to stop Covid-19 spreading. Once the cases of Covid-19 less than 10, the government might stop intervention and the economy of Burnie will back to normal.

COVID-19 Burnie Economy

  • 7 months 4 weeks ago

Energy transition to lower EROI sources (v2.7)

Josh Floyd
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 26 October 2017 (v2.7): Updated historical wind and PV deployment data for 2015-2016, adding projected PV deployment for 2017. Data via https://en.wikipedia.org/wiki/Growth_of_photovoltaics and https://en.wikipedia.org/wiki/Wind_power_by_country.

Update 18 December 2016 (v2.7): Added feature to calculate a global EROI index for all energy sources plus intermittency buffering (currently batteries only, but this could be diversified). The index is calculated specifically in terms of energy services in the form of work and heat. That is, it takes the aggregated energy services made available by all sources as the energy output term, and the energy services required to provided the buffered output as the energy input term.

Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.

Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making an adjustment to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.

Energy EROI Economy

  • 3 years 8 months ago

THE PRICE TRAP AND PEAK OIL

Hanns-Jürgen Hodann
Peak oil will occur when it is too expensive to bring oil to the surface and not when reserves reach their limit. Companies must make a profit to be able to extract oil and stay in the oil business.  However, that endeavour is becoming more and more difficult because of diminishing returns. They have to dig ever deeper to get to the oil  at ever increasing costs, and the oil they find deep down is of a lesser quality.  We have now reached a point where the price needed by oil companies to make a profit and stay in business is far higher than the price  the market can bear. That price is probably about $ 100 per barrel - and rising every year! A market price o $ 100 will almost certainly cause a sharp recession and cause the price of oil to fall back beyond the point of profitability. For example, the combined profit of ExxonMobile, Chevron and Conocophillips fell from 80.4 billion in 2011 to only 3.7 billon in 2016 - see URL below. What the market can bear depends on the spending power of the mass of non-elite workers. The CLD shows the negative feedback loops that prevent oil prices to rise above the level of  affordability. If non-elite workers cannot afford the goods and services offered,  then there will be no demand for them and by extension for oil.  In this situation the market price will not the cover the cost that oil companies need to extract oil. Oil supplies will decline and so will economic activity!

https://srsroccoreport.com/the-blood-bath-continues-in-the-u-s-major-oil-industry/

Peak Oil Oil Industry Economy Oil Prices

  • 3 years 8 months ago

COVID-19 Outbreak in Burnie Tasmania (Rajaa Sajjad, 538837)

Rajaa Sajjad

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


COVID-19 Burnie Tasmania BMA708 Economy

  • 8 months 2 days ago

Investor Allocation Model

Edwin Gary Schasteen
The following is a start to modeling the investment funds and work flow cycle for a company. This simulates how a fixed resource gets distributed among 3 investors and how the investors can lose those funds back to the investment system. The model assumes at this stage that the amount of money available for investment is fixed over the time period in which the dynamics is unfolding. This can be adjusted as the model is further developed.

Economy

  • 5 years 10 months ago

Model of COVID-19 Outbreak in Burnie, Tamania ( WANTING BAO, 536865)

wanting bao

Introduction;

This model shows COVID-19 outbreak in Burnie have some impact for local economy situation and government policy. The main government policy is lockdown during the spreading period which can help reduce the infected rate, and also increase the test scale to help susceptible confirm their situation.


Variables;

Infection rate, Death rate, Recovery rate, test rate, susceptible, immunity rate, economy growth rate

These variables are influenced by different situation.


When cases over 10, government will implement lockdown policy.


Conclusion;

When cases increase too much , they will influence the economic situation.


Interesting insights:

If the recover rate is higher, more people will recover from the disease. It seems to be a positive sign. However, it would lead to a higher number of recovered people and more susceptible. As a result, there would be more cases, and would have a negative impact on the economic growth. 

COVID-19 Burnie Tamania Economy BMA708 Marketing Insights Into Big Data

  • 7 months 4 weeks ago

BMA708 Model of COVID-19 Outbreak in Burnie island. Ming Liu 501335

Ming Liu
This model is to explain the COVID-19 outbreak in Brunie Island, Tasmania, Australia, and the relationship between it and the government policies , also with the local economy.

This model is upgraded on the basis of the SIR model and adds more variables.

A large number of COVID-19 cases will have a negative impact on the local economy. But if the number of cases is too small, it will have no impact on the macro economy

Government policy will help control the growth of COVID-19 cases by getting people tested.


COVID-19 SIR Model Government Policy Economy Burnie Tasmania UTAS BMA708

  • 8 months 5 hours ago

Model of Covid-19 Outbreak in Burnie, Tasmania (Yimeng Yao 448253)

Yao Yimeng

Model of Covid-19 Outbreak in Burnie, Tasmania

When reported COVID-19 cases begin to show a rapid increase, the government will initiate control policies to deal with the spread.As the number of people tested increases and measures such as isolation and medical assistance are implemented, the number of people infected will decline rapidly.Therefore, the government's policy is to reduce and eliminate sources of transmission by increasing the number of tests and initiating control measures.At the same time, it also shows the negative impact of economic growth, which according to the model will stop in the next 20 weeks.

COVID-19 Government Economy Burnie Tasmania UTAS BMA708

  • 7 months 4 weeks ago

Clone of Energy transition to lower EROI sources

Graham Palmer
The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy use in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are dealt with via Li-ion battery storage. Note, however, that seasonal variation of PV is not addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

Energy EROI Economy

  • 5 years 11 months ago

Clone of Energy transition to lower EROI sources (v2.5)

ismail kuris
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.

Energy EROI Economy

  • 1 year 9 months ago

The Model of COVID-19 Pandemic Outbreak in Burnie, TAS

Yuxi Wang
[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]
A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply. 
It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases are 10 or less. 
Interesting insightsThe infection rate will decline if the government increase the testing ranges, meanwhile,  the more confirmed cases will increase the pressure on hospital capacity and generate more demand for medical resources, which will promote government policy intervention to narrow the demand gap and  affect economic performance by increasing hospital construction with financial investment.

COVID-19 Burnie Tasmania BMA708 Economy

  • 8 months 3 hours ago

REINFORCING DYNAMIC THAT CAN STRENGHTEN MONETARY REALISM

Hanns-Jürgen Hodann
Could repeat expositions of the truth about money creation undermine the wide-spread erroneous belief that governments cannot spend more money than they collect in taxes unless they borrow? Governments, via their central banks, can create as much of their currency as they wish. They can never be forced into default on debt obligations issued in their own currency. In fact, they do not even need to issue debt, as the false dogma tries to make us believe - why should a government have to borrow its own currency when it can create it? Could the dynamic indicated by the CLD be used to spread the long-overdue acceptance of monetary reality? 

Monetary Realism Money Creation Economy False Monetary Prudence

  • 4 years 3 weeks ago

Pages