Overview   The model shows the industry connection and conflict between Forestry and Mountain Tourism in Derby, Tasmania. The objective of this simulation is to find out the balance point for co-exist.      How Does the Model Work?   Both industries can provide economic contribution to Tasmania.

Overview

The model shows the industry connection and conflict between Forestry and Mountain Tourism in Derby, Tasmania. The objective of this simulation is to find out the balance point for co-exist.

 

How Does the Model Work?

Both industries can provide economic contribution to Tasmania. Firstly, selling timbers through logging would generate income. Also, spendings from mountain bike riders would generate incomes. However, low tree regrowth rate can not cover up logging, which influences the beautiful vistas and riders' experiences. While satisfaction and expectation depend on vistas and experience, the demand of mountain biking would be influenced through repeat visits and world of mouth as well.

 

Interesting Insights

Although forestry can provide a great amount of economic contribution to Tasmania, over logging goes against ESG framework as well as creating conflict with mountain tourism. As long as the number of rider visits is stable, tourism can always provide a greater economic contribution compared to forestry. Therefore, the government should consider the balance point between two industries.

[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]   A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply.      It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases
[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]

A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply. 

It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases are 10 or less. 

Interesting insights
The infection rate will decline if the government increase the testing ranges, meanwhile,  the more confirmed cases will increase the pressure on hospital capacity and generate more demand for medical resources, which will promote government policy intervention to narrow the demand gap and  affect economic performance by increasing hospital construction with financial investment.

 Model supporting research of investment vs. austerity implications. Please refer to  Modern Money & Public Purpose Video .  @ LinkedIn ,  Twitter ,  YouTube

Model supporting research of investment vs. austerity implications. Please refer to Modern Money & Public Purpose Video.

@LinkedInTwitterYouTube

 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
Simple mock-up model of how prioritizing various push-pull factors impacts the size of the immigrant population over time as well as economic benefits to the U.S. economy.
Simple mock-up model of how prioritizing various push-pull factors impacts the size of the immigrant population over time as well as economic benefits to the U.S. economy.
 This is a system dynamic model to
describe relationship between local logging industry and biking tourism in
Tasmanian Derby Mountain.  In the dynamic model, the left-hand side shows how Derby
get income from local biking tourism. The biking visitors number are influenced
by scenery evaluation whic

This is a system dynamic model to describe relationship between local logging industry and biking tourism in Tasmanian Derby Mountain.

In the dynamic model, the left-hand side shows how Derby get income from local biking tourism. The biking visitors number are influenced by scenery evaluation which depend on local size of forest and influenced government policy support when Biking Tourism income is over 1000 unit. Biking visitors with good recommendation will also back to Mountain Derby and bring income for local in twice or more times.  In the right-hand side, we found the income of logging industry was influenced by local logging growth rate and government policy if local Biking Tourism income is over 1000 unit. The increase of logging industry will also increase local employment which will influence employee cost. This factor will also affect total logging income in Derby Mountain.

 

The simulation results show, with governments support the Biking tourism will increase sharply in the first few years and finally instead local logging industry, at same time bring good environment and save local forest under local increase logging industry. The recommendation graph shows that, the number of good recommendation & bad recommendation for Derby Mountain biking tourism will also increase in high speed in front of few years with data fluctuation but finally maintain in a stable line. Last simulation graph shows that how policy factor influences logging and biking industry. The Government has strong support in local tourism, however, as number of tourists increase, the positive impact from government support will continue decrease. On the contrary, the government support influence will also decease to local logging industry when logging been instead by tourism. 

   Introduction:        This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates a

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
A simple model of economic growth where a government taxes the economy, and spends it on capital and revenue goods.
A simple model of economic growth where a government taxes the economy, and spends it on capital and revenue goods.
  Overview  This model which simulates the competition of Logging with Mountain Tourism in Derby, Tasmania.  This main reason of this simulation is to find if logging will affect the mountain tourism and by any chance they can co-exist.    How the model works.   Both Timber harvesting and mountain t
Overview
This model which simulates the competition of Logging with Mountain Tourism in Derby, Tasmania.  This main reason of this simulation is to find if logging will affect the mountain tourism and by any chance they can co-exist.

How the model works.
Both Timber harvesting and mountain tourism can bring the economic contribution to Tasmania. In the Logging industry, it helps increase the need of employment and at the same time logging generate the profit through selling those timbers. In the Mountain Tourism industry, it can get the revenue through couple of ways which include accommodation (approximately 3 days find in paper), Restaurant and parking fee. However, the low growth rate of the trees is not keeping up with the rate of logging, if the trees getting less in Derby mountain, it will affect the sights and the riding experience for tourists, which will affect the satisfaction and expectation as it depends on the sights and experience. The satisfaction and expectation will influence the number of visitors, if they satisfied, they can come again or tell others about the great experience, if not, more and more people will not come again.

Interesting insights
It seems like logging has no significant negative effect to the mountain tourism, compare the forestry income with the tourism income, tourism income gradually higher than the forestry income at last, which means tourism is in a very important position, as long as the visitors are stable, tourism industry can provide greater economic contribution, stakeholders and governments can find the balance by maintain the status or better slightly reduce logging in order to make them co-exist.
 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
This is a simulation of monetary flows for a business that uses  Circular Money . All numbers represent 1000's of dollars. So a revenue of 3 means a revenue of $3000.  Revenues and expenses are monthly.
This is a simulation of monetary flows for a business that uses Circular Money.
All numbers represent 1000's of dollars. So a revenue of 3 means a revenue of $3000.
Revenues and expenses are monthly.
this is economy as it is in reality.
this is economy as it is in reality.
Update 24 Feburary 2016 (v3.1): This version has biomass, hydro and nuclear continuing at pre-transition maxima, rather than increasing. The combined emplacement rate cap for wind and PV is set at a default value of 5000 GW/year.  Major update 12 December 2015 (v3.0): This new version of the model o
Update 24 Feburary 2016 (v3.1): This version has biomass, hydro and nuclear continuing at pre-transition maxima, rather than increasing. The combined emplacement rate cap for wind and PV is set at a default value of 5000 GW/year.

Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the future supply curve also set directly (but using a separate input array to the historical data). For coal and natural gas fired electricity, this also requires that the simple, direct-input EROI method be used (i.e. same as for coal and NG heating, and petroleum transport fuels).

Note that this new version of the model no longer provides a historical view of the emplacement rates for energy supply sources other than wind and PV, and therefore no longer allows comparison of required emplacement rates for wind and PV with incumbent energy sources. Output data relating to this is available in model version v2.5 (see link below), for the specific transition duration built into that version of the model.

The previous version of the model (version 2.5) is available here.

The original "standard run" version of the model (v1.0) is available here.