Insight diagram
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Clone of Energy transition to lower EROI sources (v2.5)
Insight diagram
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
Clone of Energy transition to lower EROI sources (v1.0)
Insight diagram
Clone of Elements of Human Security
Insight diagram
Clone of Clone of PA_if_6_Carvajal_Osorio_Tamayo
Insight diagram
Clone of PA_if_6_Carvajal_Osorio_Tamayo
Insight diagram
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
Clone of Model of Covid-19 Outbreak in Burnie, Tasmania (Yue Xiang 512994)
Insight diagram
Clone of Clone of PA_if_6_Carvajal_Osorio_Tamayo
Insight diagram
Clone of Clone of PA_if_6_Carvajal_Osorio_Tamayo
Insight diagram
Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the future supply curve also set directly (but using a separate input array to the historical data). For coal and natural gas fired electricity, this also requires that the simple, direct-input EROI method be used (i.e. same as for coal and NG heating, and petroleum transport fuels).

Note that this new version of the model no longer provides a historical view of the emplacement rates for energy supply sources other than wind and PV, and therefore no longer allows comparison of required emplacement rates for wind and PV with incumbent energy sources. Output data relating to this is available in model version v2.5 (see link below), for the specific transition duration built into that version of the model.

The previous version of the model (version 2.5) is available here.

The original "standard run" version of the model (v1.0) is available here.
Clone of Energy transition to lower EROI sources (v3.0)
Insight diagram
This is a reconstruction of the SIMM model presented in Chapter 2 of Feedback Economics (Contemporary Systems Thinking)

@LinkedInTwitterYouTube


Clone of Simple Macroeconomic Model (SIMM) (SFD)
Insight diagram
[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]

A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply. 

It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases are 10 or less. 

Interesting insights
The infection rate will decline if the government increase the testing ranges, meanwhile,  the more confirmed cases will increase the pressure on hospital capacity and generate more demand for medical resources, which will promote government policy intervention to narrow the demand gap and  affect economic performance by increasing hospital construction with financial investment.

The Model of COVID-19 Pandemic Outbreak in Burnie, TAS
Insight diagram
Simple mock-up model of how prioritizing various push-pull factors impacts the size of the immigrant population over time as well as economic benefits to the U.S. economy.
Immigrant Populations and Policy Implications
Insight diagram
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
Clone of Energy transition to lower EROI sources (v1.0)
Insight diagram

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

Model of COVID-19 outbreak in Burnie, Tasmania
Insight diagram
A simple model of economic growth where a government taxes the economy, and spends it on capital and revenue goods.
Clone of Simple Economic Growth Model
Insight diagram
PA_if_6_Carvajal_Osorio_Tamayo
Insight diagram
Clone of Clone of PA_if_6_Carvajal_Osorio_Tamayo
Insight diagram
Clone of Clone of Clone of Elements of Human Security
Insight diagram
The Cred System is an alternative to traditional currency that increases community resiliency and reduces participant's dependence on traditional dollars. This model is a basic description of the Cred System, involving four people and two loops.
Cred System
Insight diagram

Overview

The model shows the industry connection and conflict between Forestry and Mountain Tourism in Derby, Tasmania. The objective of this simulation is to find out the balance point for co-exist.

 

How Does the Model Work?

Both industries can provide economic contribution to Tasmania. Firstly, selling timbers through logging would generate income. Also, spendings from mountain bike riders would generate incomes. However, low tree regrowth rate can not cover up logging, which influences the beautiful vistas and riders' experiences. While satisfaction and expectation depend on vistas and experience, the demand of mountain biking would be influenced through repeat visits and world of mouth as well.

 

Interesting Insights

Although forestry can provide a great amount of economic contribution to Tasmania, over logging goes against ESG framework as well as creating conflict with mountain tourism. As long as the number of rider visits is stable, tourism can always provide a greater economic contribution compared to forestry. Therefore, the government should consider the balance point between two industries.

Simulation of Derby Mountain Bikes versus Forestry
Insight diagram
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Clone of Energy transition to lower EROI sources (v2.5)
Insight diagram
This is a model which explains the difference between Mountain bikes riding compared to logging in the Tasmanian forests.
Simulation of Derby Mountain bikes riding versus logging
Insight diagram
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
Clone of Model of Covid-19 Outbreak in Burnie, Tasmania (Yue Xiang 512994)
Insight diagram
This is a simulation of monetary flows for a business that uses Circular Money.
All numbers represent 1000's of dollars. So a revenue of 3 means a revenue of $3000.
Revenues and expenses are monthly.
BusinessFlow