Insight diagram
this is economy as it is in reality.
economy
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Clone of Burnie COVID-19 outbreak demo model version 2
Insight diagram
Overview
This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.

How the model works
The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to increased visitors using the forest of mountain biking. Accompanying variables effect the tourism income that flows from use of the bike trails.
On the right side, the forest flow begins with tree growth then a demand for timber leading to the logging production. The sales from the logging then lead to the forestry income.
The model works by identifying how the different variables interact with both mountain biking and logging. As illustrated there are variables that have a shared effect such as scenery and adventure and entertainment.

Variables
The variables are essential in understanding what drives the flow within the model. For example mountain biking demand is dependent on positive word mouth which in turn is dependent on scenery. This is an important factor as logging has a negative impact on how the scenery changes as logging deteriorates the landscape and therefore effects positive word of mouth.
By establishing variables and their relationships with each other, the model highlights exactly how mountain biking and forestry logging effect each other and the income it supports.

Interesting Insights
The model suggests that though there is some impact from logging, tourism still prospers in spite of negative impacts to the scenery with tourism increasing substantially over forestry income. There is also a point at which the visitor population increases exponentially at which most other variables including adventure and entertainment also increase in result. The model suggests that it may be possible for logging and mountain biking to happen simultaneously without negatively impacting on the tourism income.
Clone of Simulation of Derby Mountain biking versus logging
Insight diagram
Clone of Clone of How many jobless graduates in the UK future scenarios
Insight diagram
A toy model to see what happens to employment when people must move through various states to get to certain jobs
Clone of Basic Employment Model
Insight diagram

Description:

Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from the SIR model(susceptible, infected, recovered) to determine the effect of the covid-19 outbreak on economic outcomes via government policy.

Assumptions:

The government policy is triggered when the number of infected is more than ten.

The government policies will take a negative effect on Covid-19 outbreaks and the financial system.

Parameters:

We set some fixed and adjusted variables.

Covid-19 outbreak's parameter

Fixed parameter: Background disease.

Adjusted parameters: Infection rate, recovery rate. Immunity loss rate can be changed from vaccination rate.

Government policy's parameters

Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters

Fixed parameter: Tourism

Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

An increased vaccination rate and testing rate will decrease the number of infected cases and have a little more negative effect on the economic system. However, the financial system still needs a long time to recover in both cases.

BMA708_Assignment 3_Nguyen Dang Khoa Vo_520272_COVID-19 outbreak and Burnie economy
Insight diagram
Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Clone of Closed Economy
Insight diagram
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Clone of Energy transition to lower EROI sources (v2.5)
Insight diagram
Model description:
This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy. 

More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death cases to local economy are illustrated. 

The model is based on SIR (Susceptible, Infected and recovered) model. 

Variables:
The simulation takes into account the following variables: 

Variables related to Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate. 

Variables related to Governmental policies: (1): Vaccination mandate. (2): Travel restriction to Burnie. (3): Economic support. (4): Gathering restriction.

Variables related to economic growth: Economic growth rate. 

Adjustable variables are listed in the part below, together with the adjusting range.

Assumptions:
(1): Governmental policies are aimed to control(reduce) Covid-19 infections and affect (both reduce and increase) economic growth accordingly.

(2) Governmental policy will only be applied when reported cases are 10 or more. 

(3) The increasing cases will negatively influence Burnie economic growth.

Enlightening insights:
(1) Vaccination mandate, when changing from 80% to 100%, doesn't seem to affect the number of death cases.

(2) Governmental policies are effectively control the growing death cases and limit it to 195. 

Clone of Burnie Tasmania Covid - 19 outbreak simulation Model by Yankang Huang 541 277
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Clone of Burnie COVID-19 outbreak demo model version 2
Insight diagram
Clone of How many jobless graduates in the UK future scenarios
Insight diagram

Model in support of an article being written about the relationship between investment and austerity. See Version 2

See also:
Inv vs Aust Sim [IM-2736]
Inv & Output 1 [IM-2740]
Inv & Output 2 [IM-2741]
@LinkedInTwitterYouTube


Investment vs Austerity
Insight diagram
Initial qualitative causal loop diagram Fig 5.21 from Dianati, K. (2022) London’s Housing Crisis – A System Dynamics Analysis of Long-term Developments: 40 Years into the Past and 40 Years into the Future UCL PhD Thesis and see also Video presentation and CLD 2 Insight after Simulation experiments
London Housing Crisis CLD 1 (HSD 7)
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  





Clone of Burnie COVID-19 outbreak demo model
Insight diagram
Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the future supply curve also set directly (but using a separate input array to the historical data). For coal and natural gas fired electricity, this also requires that the simple, direct-input EROI method be used (i.e. same as for coal and NG heating, and petroleum transport fuels).

Note that this new version of the model no longer provides a historical view of the emplacement rates for energy supply sources other than wind and PV, and therefore no longer allows comparison of required emplacement rates for wind and PV with incumbent energy sources. Output data relating to this is available in model version v2.5 (see link below), for the specific transition duration built into that version of the model.

The previous version of the model (version 2.5) is available here.

The original "standard run" version of the model (v1.0) is available here.
Energy transition to lower EROI sources (v3.0)
Insight diagram
The following is a start to modeling the investment funds and work flow cycle for a company. This simulates how a fixed resource gets distributed among 3 investors and how the investors can lose those funds back to the investment system. The model assumes at this stage that the amount of money available for investment is fixed over the time period in which the dynamics is unfolding. This can be adjusted as the model is further developed.
Investor Allocation Model
Insight diagram
Clone of Clone of PA_Av3_6_Carvajal_Osorio_Tamayo
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Clone of Burnie COVID-19 outbreak demo model version 2
Insight diagram
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.

Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making a compensation to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Clone of Energy transition to lower EROI sources (v2.6)
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Clone of Burnie COVID-19 outbreak demo model version 2
Insight diagram

Overview

This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.

 

Model Work

The tourism industry is represented on the model's left side, and the logging industry is on the right side. Interactions between these two industries generate tax revenues. Logging and tourism have different growth rates regarding people working/consuming. The initial values of these two industries in the model are not fixed but increase yearly due to inflation or economic growth.

 

Detail Insights

From the perspective of tourism, as the number of tourists keeps growing, the number of people who choose to ride in Derby City also gradually increases. And the people who ride rate the ride. The negative feedback feeds back into the cycling population. Similarly, positive cycling reviews lead to more customer visits. And all the customers will create a revenue through tourism, and a certain proportion of the income will become tourism tax.

From a logging perspective, it is very similar to the tourism industry. As the number of people working in the industry is forecast to increase, the industry's overall size is predicted to grow. And as the industry's size continues to rise, the taxes on the logging industry will also continue to rise. Since logging is an industry, the tax contribution will be more significant than the tourism excise tax.

 

This model assumption is illustrated below:

1. The amount of tax reflects the level of industrial development.

2. The goal of reducing carbon emissions lets us always pay attention to the environmental damage caused by the logging industry.

3. The government's regulatory goal is to increase overall income while ensuring the environment.

4. Logging will lead to environmental damage, which will decrease the number of tourists.

 

This model is based on tourism tax revenue versus logging tax revenue. Tourism tax revenue is more incredible than logging tax revenue, indicating a better environment. As a result of government policy, the logging industry will be heavily developed in the short term. Growth in the logging industry will increase by 40%. A growth rate of 0.8 and 0.6 of the original is obtained when logging taxes are 2 and 4 times higher than tourism taxes.

 

Furthermore, tourism tax and logging tax also act on the positive rate, which is the probability that customers give a positive evaluation. The over-development of the logging industry will lead to the destruction of environmental resources and further affect the tourism industry. The logging tax will also affect the tourism Ride Rate, which is the probability that all tourism customers will choose Derby city.

 

This model more accurately reflects logging and tourism's natural growth and ties the two industries together environmentally. Two ways of development are evident in the two industries. Compared to tourism, logging shows an upward spiral influenced by government policies. Government attitudes also affect tourism revenue, but more by the logging industry. 

Simulating Derby Mountain Biking Versus Logging
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Clone of Burnie COVID-19 outbreak demo model version 2
Insight diagram
Clone of Clone of Clone of Recycling and Waste Treatment in Vancouver
Insight diagram
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.

Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making a compensation to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Clone of Clone of Energy transition to lower EROI sources (v2.6)