Overview     This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and fi

Overview 

This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and find out the optimal point for coexistence to help improve Tasmania’s economy. 

 

How the model works 

It is recognized that the mountain biking and forestry industries can help support the Tasmanian community and strengthen the Tasmanian economy. The logging and forest sector in Derby can help the local community generate wealth and create more employment opportunities. The sector main source of income come from selling timber such as domestic and export sales. Nevertheless, the sector’s profit has decreased over the past few years on account of the weaker demand and reduced output. Accordingly, the profitability and output of the sector have fluctuated in response to the availability of timber, the timber price movements as well as the impact of changing demand conditions in downstream timber processing sectors. The slow growth rate for a timber has a negative impact on the profitability of the forestry industry and the economic contribution of this industry is set to grow slower, as there is a positive correlation between these variables. In addition, the mountain biking industry in Derby can bring a huge significant economic contribution to the local community. The revenue streams of the industry come from bike rental, accommodation, retail purchase and meals and beverages. These variables also influence the past experience which is positive correlation between reviews and satisfaction that can impact the demand for the mountain biking trails. More importantly, the low regeneration rate for a timber can have a negative impact on the landscape of the mountain biking and the tourist’s past experience that led to a decrease in the demand of tourists for the mountain biking, as the reviews and satisfaction are dependent on the landscape and past experience. It is evident that the industry not only helps the local community generate wealth through industry value addition but also creates a lot of employment opportunities. Therefore, the Mountain Bike Trails can be regarded as sustainable tourism that can help increase employment opportunities and economic contribution that can be of main economic significance to the Tasmania’s economy. Therefore, both industries can co-exist that can maximise the economic contribution to the local community and the Tasmanian economy.


Interesting Insights

It is interesting to note that the activity of cutting down trees does not influence the development of Mountain Biking industry. By lowering the prices of accommodation, food, bike rental and souvenirs, it can help increase the reviews and recommendations of Mountain Biking that will enhance the number of tourists. In this case, the Mountain Biking industry can achieve sustainable economic growth in the long-term while the economic growth rate of forestry industry will continue to decrease. 


 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
 Overview:   The model shows the industry competition and relationship between Forrestry and Mountain Bike Trip in Derby, Tasmania. The aim of the simulation is to find a balance between the co-existence of these two industry.      How Does the Model Work?       Both industries will generate incomes
Overview: 
The model shows the industry competition and relationship between Forrestry and Mountain Bike Trip in Derby, Tasmania. The aim of the simulation is to find a balance between the co-existence of these two industry.

How Does the Model Work?

Both industries will generate incomes. Firstly, income is generated from the sale of timber through logging. In addition, income is also generated from the consumption of mountain bike riders. Regarding to the Forrestry industry, people cut down trees because there is a market demand for timber. The timber is sold for profits. However, the experience of mountain biking tourism is largely affected by the low regeneration rate of trees and the degradation of the environment and landscape due to tree felling. People have better riding experiences when trees are abundant and the scenery is beautiful. People's satisfaction and expectations depend on the scenery and experience. Recommendations of past riders will also impact the tourists amount.

Interesting Insights

The income generated by logging can provide a significant economic contribution to Tasmania, but excessive logging can lead to environmental problems and a reduction in visitors. Excessive logging can lead to a decline in tourism in the mountains, which will affect tourism. Despite the importance of forestry, tourism can also provide a significant economic contribution to Tasmania. The government should find a balance between the two industries while maintaining the number of tourists. 



  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
Houdini SD Model from  Eskanasi 2014   thesis including land and social housing
Houdini SD Model from Eskanasi 2014  thesis including land and social housing
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Could repeat expositions of the truth about
money creation undermine the wide-spread erroneous belief that governments
cannot spend more money than they collect in taxes unless they borrow?
Governments, via their central banks, can create as much of their currency as
they wish. They can never be for
Could repeat expositions of the truth about money creation undermine the wide-spread erroneous belief that governments cannot spend more money than they collect in taxes unless they borrow? Governments, via their central banks, can create as much of their currency as they wish. They can never be forced into default on debt obligations issued in their own currency. In fact, they do not even need to issue debt, as the false dogma tries to make us believe - why should a government have to borrow its own currency when it can create it? Could the dynamic indicated by the CLD be used to spread the long-overdue acceptance of monetary reality? 

  ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


Fig 23 Houdini Interaction between rental and owner occupied sectors SD Model from  Eskanasi 2014   thesis 
Fig 23 Houdini Interaction between rental and owner occupied sectors SD Model from Eskanasi 2014  thesis 
  Simulates personal accounts over time.    Model based on the  Sustainable Money System . For a short introduction, read this  short article  or watch the  TEDx talk .
Simulates personal accounts over time.

Model based on the Sustainable Money System.
For a short introduction, read this short article or watch the TEDx talk.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.    According to the analysis, logging does not reduce tourism income. Wi
This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.

According to the analysis, logging does not reduce tourism income. With the increase of number of bike guide, tourism income will increase as well. Also, in forest industry, timber income is higher than the harvest spending which means the industry always gain profits from logging. Therefore, the main concern is that the logging should be balanced between the Mountain Tourism and the forest industry.
 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
A toy model to see what happens to employment when people must move through various states to get to certain jobs
A toy model to see what happens to employment when people must move through various states to get to certain jobs
   Model description:     This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the governm

Model description: 

This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the government which will impact on the local infection and economy. 

 

Assumption:

Government policies will reduce the mobility of the population as well as the infection. In addition, economic activities in the tourism and hospitality industry will suffer negative influences from the government measures. However, essential businesses like supermarkets will benefit from the health policies on the contrary.

 

Variables:

Infection rate, recovery rate, death rate, testing rate are the variables to the cases of Covid-19. On the other hand, the number of cases is also a variable to the government policies, which directly influences the number of exposed. 

 

The GDP is dependent on the variables of economic activities. Nonetheless, the government’s lockdown measure has also become the variable to the economic activities. 

 

Interesting insights:

Government policies are effective to curb infection by reducing the number of exposed when the case number is greater than 10. The economy becomes stagnant when the case spikes up but it climbs up again when the number of cases is under control. 

This model simulates the competition between logging versus adventure tourism(mountain bike riding) in Derby Tasmania. The purpose of this model is that focus on the relationship between the timber industry and mountain bike tourism in adventure. It also reflects how well these two industries co-exi
This model simulates the competition between logging versus adventure tourism(mountain bike riding) in Derby Tasmania. The purpose of this model is that focus on the relationship between the timber industry and mountain bike tourism in adventure. It also reflects how well these two industries co-exist. 

How this model works
This model shows tree grow development. In order to maximize the profits from selling the logging, the demand for timbers will increase. 
The mountain bike visits depend on past experience and recommendations. In addition, past experience and recommendations depend on Scenery, which is determined by the number of trees and visitors and adventure number. However, park capacity limits the number of use mountain bikes, because the convince of parking is a consideration for the visitors. 
It seems like the high logging sale does not deter mountain bike activities. By reducing the parking capacity, visitor experience and number are increased. Because of the strong relationship between the mountain bike park and the explosion in visitor numbers. With the improvement in the number of visitors, the number of food and restaurants will go up as well. Because of the daily needs of the visitors. 

A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" value
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.