Polyrhachis identification chart Not aware of your Polyrhachis identification type, use this to help identify it.     (Not all species listed) (all located on Australia)
Polyrhachis identification chart
Not aware of your Polyrhachis identification type, use this to help identify it.

(Not all species listed) (all located on Australia)
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
Simple model to illustrate a simple simulation of the microalgae biomass production, focusing on the dependent variables such as light, nutrients and other factor that is running for a yearly period.  The biomass model uses an example, Phytoplankton growth based on Steele's and Michaelis-Menten equa
Simple model to illustrate a simple simulation of the microalgae biomass production, focusing on the dependent variables such as light, nutrients and other factor that is running for a yearly period.

The biomass model uses an example, Phytoplankton growth based on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Once this is understood, it looks upon the viability of biogas production from the microalgae biomass.


This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

Thanks to Jacob Englert for the model if-then-else structure.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Model prognozuje wpływ dystrybucji subwencji w ramach WPR na strukturę obszarową i intensywność produkcji gospodarstw rolnych w Polsce. Struktura obszarowa gospodarstw decyduje o stopniu mozaikowatości krajobrazu wiejskiego a intensywność produkcji przekłada się na bilans węgla i azotu użytków rolny
Model prognozuje wpływ dystrybucji subwencji w ramach WPR na strukturę obszarową i intensywność produkcji gospodarstw rolnych w Polsce. Struktura obszarowa gospodarstw decyduje o stopniu mozaikowatości krajobrazu wiejskiego a intensywność produkcji przekłada się na bilans węgla i azotu użytków rolnych. W oparciu o te dane szacowane są popularne wskaźniki jakości środowiska: zmiany zawartości materii organicznej w glebach, odpływ azotu do wód gruntowych i liczebność pospolitych ptaków krajobrazu wiejskiego.

Model opracowano w ramach Programu Wieloletniego IUNG-PIB w zadaniu 2.1 i jest obecnie rozwijany w zadaniu 1.9.
 A simulation illustrating how the size of a fish population affects the number of fish caught and vice versa.

A simulation illustrating how the size of a fish population affects the number of fish caught and vice versa.