Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
 The purpose of this deer management model is to explore the capacity of wildlife management actions to help us adapt to the effects of climate change.

The purpose of this deer management model is to explore the capacity of wildlife management actions to help us adapt to the effects of climate change.

This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This is a model representing bushmeat, nutrition, and ebola as it relates to biodiversity and overfishing.
This is a model representing bushmeat, nutrition, and ebola as it relates to biodiversity and overfishing.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
 This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and

This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and add to the stock at which they end.

•Average
(Status Quo) Case

 –Last
30 years of historical EAA data  

 –Used
the past to predict the future 

 –Represents
the status quo case 

 –Includes
the dry portion  and wet portion of AMO
cycle
•Average (Status Quo) Case
–Last 30 years of historical EAA data
–Used the past to predict the future
–Represents the status quo case
–Includes the dry portion  and wet portion of AMO cycle
Eastern oyster growth model calibrated for Great Bay.  Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data, driver data, and culture practice from Phil Trowbridge, Ray Grizzle, and Suzanne Bricker.  This is a one box model for an idealized farm with one million oysters seed
Eastern oyster growth model calibrated for Great Bay.

Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data, driver data, and culture practice from Phil Trowbridge, Ray Grizzle, and Suzanne Bricker.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Great Bay growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Examining the ecosystem of the sea turtle and how that influences its population as an endangered species.
Examining the ecosystem of the sea turtle and how that influences its population as an endangered species.
Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.