Insight diagram
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
Clone of Isle Royale: Predator Prey Interactions
5 months ago
Insight diagram

This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.
Koala Population South East Queensland
Insight diagram
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)
Insight diagram
A basic model of the short-term carbon cycle.
Short-term Carbon Cycle
Insight diagram

The purpose of this deer management model is to explore the capacity of wildlife management actions to help us adapt to the effects of climate change.

Clone of Story Telling - Deer Management Under Climate Change
Insight diagram

This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which they start and add to the stock at which they end.

Phosphorus dynamics in a shallow lake
Insight diagram
This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.

The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occur, production of algae in the water column must exceed respiration.

This can only occur if vertical mixing cannot transport algae into deeper, darker water, for long periods, where they are unable to grow.

Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 287-295
Blooming of phytoplankton & Oyster growth
Insight diagram
This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
Clone of [Reference] Vehicle to Smart Grid - Prototype
Insight diagram
A draft model of the techonomy
Technology Ecosystem
Insight diagram
Dissolved oxygen mass balance in a tide pool, forced by tides and light.
Tide pool dissolved oxygen model
Insight diagram
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
Clone of Simple phytoplankton and oyster model
Insight diagram
Group 5 Watershed Project Insight Maker
Insight diagram
An attempt to model some of the features in the national water market in Australia.
Water Resources
Insight diagram
Combining electromobility and renewable energies since 2014.

http://www.amsterdamvehicle2grid.nl/

Clone of Amsterdam V2G simulation 2.0
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Group 5 Rooftop Rainwater Insight
Insight diagram
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Clone of Vollenweider model
Insight diagram
From science Dec 2106 article showing a CLD diagram
Lake fish regime shift
Insight diagram
With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
Model 1 - Warming feedback
Insight diagram
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
Clone of Clone of Microgrid with storage
Insight diagram
Here is my systems flow chart for a moose population!
Moose System Flow Chart
Insight diagram
Collapse of the economy, not just recession, is now very likely. To give just one possible cause, in the U.S. the fracking industry is in deep trouble. It is not only that most fracking companies have never achieved a free cash flow (made a profit) since the fracking boom started in 2008, but that  an already very weak  and unprofitable oil industry cannot cope with extremely low oil prices. The result will be the imminent collapse of the industry. However, when the fracking industry collapses in the US, so will the American economy – and by extension, probably, the rest of the world economy. To grasp a second and far more serious threat it is vital to understand the phenomenon of ‘Global Dimming’. Industrial activity not only produces greenhouse gases, but emits also sulphur dioxide which converts to reflective sulphate aerosols in the atmosphere. Sulphate aerosols act like little mirrors that reflect sunlight back into space, cooling the atmosphere. But when economic activity stops, these aerosols (unlike carbon dioxide) drop out of the atmosphere, adding perhaps as much as 1° C to global average temperatures. This can happen in a very short period time, and when it does mankind will be bereft of any means to mitigate the furious onslaught of an out-of-control and merciless climate. The data and the unrelenting dynamic of the viral pandemic paint bleak picture.  As events unfold in the next few months,  we may discover that it is too late to act,  that our reign on this planet has, indeed,  come to an abrupt end?  
Covid 19 - irreversible and catastrophic consequences
Insight diagram
The beginning of a systems dynamics model for teaching NRM 320.
Clone of Insight Starting Guide for NRM 320
Insight diagram
Demonstration of excretion vs immobilization as function of feedstock C:N
Clone of C:N-bacteria-DOM
Insight diagram

Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.

Modèle simple pour illustrer la croissance des huîtres sur la base de la production primaire de phytoplancton comme une variable d'état, forcé par la lumière et les éléments nutritifs, en cours d'exécution pour une période annuelle.

La croissance du phytoplancton sur la base de Steele et équations de Michaelis-Menten), où:

Production primaire = (([Pmax] * [I] / [Iopt] * exp (1 - [I] / [Iopt]) * [S]) / ([K] + [S]))

Pmax: production maximale (d-1)
I: L'énergie lumineuse en profondeur de l'intérêt (Ue m-2 s-1)
Iopt: L'énergie lumineuse à laquelle se produit Pmax (Ue m-2 s-1)
S: concentration des éléments nutritifs (N umol L-1)
KS: Demi constants de saturation en nutriments (N umol L-1).

D'autres développements:
- Les éléments nutritifs comme variable d'état dans le cycle de détritus de phytoplancton et d'huîtres de la biomasse.
- Lumière limitée par la concentration de phytoplancton.
- Effet de la température sur le phytoplancton et la croissance des huîtres.

Clone of Clone of Oyster Growth based on Phytoplankton Biomass