Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
This is step 2 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​

In this step we divide the incoming energy from the sun to the land and to the oceaan.


With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
Model 2 Distributing in coming Sun over land and ocean
Insight diagram
Combining electromobility and renewable energies since 2014.

http://www.amsterdamvehicle2grid.nl/

Clone of Amsterdam V2G simulation 2.0
Insight diagram
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
Clone of CARP - Carp AquacultuRe in Ponds
Insight diagram
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
Clone of Mercury pollution model with diagenesis
Insight diagram
Bathtub SFD
MLP Bathtub Insight
Insight diagram
Combining electromobility and renewable energies since 2014.

http://www.amsterdamvehicle2grid.nl/

Clone of Clone of Amsterdam V2G simulation 2.0
Insight diagram
Testing for MSc
Clone 26/07/16 of Plastic Pollution Solution Revolution
Insight diagram
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
No advection, No oyster. Pytoplankton and oyster model
Insight diagram
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
Clone of Clone of Estuarine salinity 1 box model (J. Gomes Ferreira)
Insight diagram
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of Clone of Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Insight diagram
Eastern oyster growth model calibrated for Great Bay.

Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data, driver data, and culture practice from Phil Trowbridge, Ray Grizzle, and Suzanne Bricker.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Great Bay growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
REServ Eastern oyster Great Bay
Insight diagram
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Clone of Clone3f micro algae , biogas , bioelectrcidades
Insight diagram
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
Mahinga Kai
Clone of Clone of Key feedbacks in a shallow lake relating to Koura
Insight diagram
This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
Clone of Vehicle to Smart Grid - Prototype
Insight diagram
Simulates Ag biogeochemical cycling using data from Rauch and Pacyna (2009). This Insight forms part of the engaged lear​ning exercise for a SESYNC case study about the human relationship with silver as a natural resource throughout history.
Clone of Silver Biogeochemical Cycling v2
Insight diagram
Clone of Plastic Pollution Solution Revolution
Insight diagram
A model of an infectious disease and control

Clone of Disease Dynamics (Agent Based Modeling) Guy Lakeman
Insight diagram
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
Two households with PV systems and electric vehicles sharing a battery and connected to the grid. What are the advantages?

This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
Clone of Vehicle to Grid Simulation
Insight diagram
This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
IDREEM example oyster population model
Insight diagram
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Clone of OVERSHOOT GROWTH INTO TURBULENCE
Insight diagram
​ This model is used in a world studies extended essay research. The research question is: In what ways would the water desalination method used in Singapore benefit   water-stressed and economically less developed countries, using Palestine as a case study.
This model retrieved data on Palestine water resources from Authority, Palestinian Water. "Annual status report on water resources, water supply, and wastewater in the occupied State of Palestine 2011." Palestinian Water Authority, Ramallah 13 (2012) 
Data for Singapore desalination process is taken from PUB, Singapore Water Agency, "Singapore Water Story." PUB, Singapore's National Water Agency. N.p., n.d. Web. 25 Feb. 2017.
Data for Palestine population growth was taken from World Bank. World Bank. "West Bank and Gaza Home." The World Bank. N.p., n.d. Web. 25 Feb. 2017.
This model assumes that Palestine population will grow at 2.92% (World Bank, 2015) and average domestic consumption is 90 litres per capita per day(Palestine Water Authority, 2012). This model does not take into account growing demands for industrial and agricultural sector. It also does not show the impact of climate change on Palestine natural water resources.


Clone of Model of Palestine water demand and supply in 40 years without input from desalination process