STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
 Interplay between wolves eating sheep and farmers killing wolves who kill deer that eat crops that feed sheep.

Interplay between wolves eating sheep and farmers killing wolves who kill deer that eat crops that feed sheep.

This is a model representing bushmeat, nutrition, and ebola as it relates to biodiversity and overfishing.
This is a model representing bushmeat, nutrition, and ebola as it relates to biodiversity and overfishing.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.     Mahinga Kai
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
Mahinga Kai
This is a two-stock (ocean and atmosphere) climate model simulating the behavior of the earth climate from time zero. The initial conditions of the stocks are also set zero, so it demonstrates how long the earth takes to reach the temperature suitable for life.
This is a two-stock (ocean and atmosphere) climate model simulating the behavior of the earth climate from time zero. The initial conditions of the stocks are also set zero, so it demonstrates how long the earth takes to reach the temperature suitable for life.
Simulates Ag biogeochemical cycling using data from Rauch and Pacyna 
(2009). This Insight forms part of the 
engaged lear​ning exercise for a SESYNC case study about the human relationship with silver as a natural resource 
throughout history.
Simulates Ag biogeochemical cycling using data from Rauch and Pacyna (2009). This Insight forms part of the engaged lear​ning exercise for a SESYNC case study about the human relationship with silver as a natural resource throughout history.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.  
 Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amo

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.


Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
It seems that I've made a mess of mine! But it's a mess with a purpose....  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
It seems that I've made a mess of mine! But it's a mess with a purpose....

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
Attempt to model the Biotic pump.    Are you working on climate and / or the Biotic Pump and want to join efforts, please contact me (marcel.planb@gmail.com)  Marcel de Berg   Our-Green-Spine www.our-green-spine.org
Attempt to model the Biotic pump.

Are you working on climate and / or the Biotic Pump and want to join efforts, please contact me (marcel.planb@gmail.com)

Marcel de Berg 
Our-Green-Spine
www.our-green-spine.org
European Masters in System Dynamics 2016 New University of Lisbon, Portugal  Simple model to represent oyster individual growth by simulating feeding and metabolism.
European Masters in System Dynamics 2016
New University of Lisbon, Portugal

Simple model to represent oyster individual growth by simulating feeding and metabolism.
 Harvested fishery with endogenous investment. Ch 9 p340-345 John Morecroft (2007) Strategic Modelling and Business Dynamics

Harvested fishery with endogenous investment. Ch 9 p340-345 John Morecroft (2007) Strategic Modelling and Business Dynamics

11 months ago
To calculate emission amount from mobile sources in particular from road traffic by vehicle age-cohort in DKI Jakarta - Indonesia
To calculate emission amount from mobile sources in particular from road traffic by vehicle age-cohort in DKI Jakarta - Indonesia