This is a system dynamic model to
describe relationship between local logging industry and biking tourism in
Tasmanian Derby Mountain.  In the dynamic model, the left-hand side shows how Derby
get income from local biking tourism. The biking visitors number are influenced
by scenery evaluation whic

This is a system dynamic model to describe relationship between local logging industry and biking tourism in Tasmanian Derby Mountain.

In the dynamic model, the left-hand side shows how Derby get income from local biking tourism. The biking visitors number are influenced by scenery evaluation which depend on local size of forest and influenced government policy support when Biking Tourism income is over 1000 unit. Biking visitors with good recommendation will also back to Mountain Derby and bring income for local in twice or more times.  In the right-hand side, we found the income of logging industry was influenced by local logging growth rate and government policy if local Biking Tourism income is over 1000 unit. The increase of logging industry will also increase local employment which will influence employee cost. This factor will also affect total logging income in Derby Mountain.

 

The simulation results show, with governments support the Biking tourism will increase sharply in the first few years and finally instead local logging industry, at same time bring good environment and save local forest under local increase logging industry. The recommendation graph shows that, the number of good recommendation & bad recommendation for Derby Mountain biking tourism will also increase in high speed in front of few years with data fluctuation but finally maintain in a stable line. Last simulation graph shows that how policy factor influences logging and biking industry. The Government has strong support in local tourism, however, as number of tourists increase, the positive impact from government support will continue decrease. On the contrary, the government support influence will also decease to local logging industry when logging been instead by tourism. 

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 Implications of spraying pesticides to control insects. http://bit.ly/diYPED

Implications of spraying pesticides to control insects. http://bit.ly/diYPED

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the moose birth-rate to simulate Over-shoot followed by environmental recovery
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the moose birth-rate to simulate Over-shoot followed by environmental recovery
 The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about

The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about system behavior and collective understanding among stakeholders regarding connections between specific hydrological regime characteristics affected by management of Ruedi Reservoir and the ecological or biological variables important to local communities. For the sake of simplicity, the model includes mostly unidirectional relationships—feedback loops are exploded to reveal intermediate connections between variables. This approach increases the number of variables represented in the system, perhaps increasing its complexity at first glance. However, the primary benefit to the end user is that the model becomes more readable and explicit in its representation of system behavior. 

 

The conceptual model presented here likely differs by degrees from those held by the various investigators who considered Fryingpan River processes over the previous 80 years. However, it affectively aggregates the ideas main presented by each of those individuals. This model focuses on hydrological and biological variables and does not incorporate the entire diversity of human uses and needs for water from the Fryingpan River (e.g. hydropower production for the City of Aspen, revenue generated in the Town of Basalt by angling activities, etc.).  Rather it attempts to illustrate how the conditional state of important ecosystem characteristics might respond to reservoir management activities that impact typical spring flows, peak flow timing and magnitude, summer flows, fall flows, and winter flows. 

This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
 This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.        Use the sliders below to quickly change the initial values of components of the model.
This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.

Use the sliders below to quickly change the initial values of components of the model.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
https://www.newscientist.com/article/2094401-cont-roo-ception-hormone-implants-bring-kangaroos-under-control/
https://www.newscientist.com/article/2094401-cont-roo-ception-hormone-implants-bring-kangaroos-under-control/
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


 This model has two main components. First is modelling the change in population composition as non-First Nations immigration increases with the opening of new mines in the region. The second is modelling the increasing income disparity between First Nations and non-First Nations as mining jobs are

This model has two main components. First is modelling the change in population composition as non-First Nations immigration increases with the opening of new mines in the region. The second is modelling the increasing income disparity between First Nations and non-First Nations as mining jobs are disproportionately gained by non-First Nations workers.

 This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.        Use the sliders below to quickly change the initial values of components of the model.
This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.

Use the sliders below to quickly change the initial values of components of the model.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.