Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
C8 Article through the Economy lense
C8 Article through the Economy lense
 This model is an attempt to understand the interactions within an economy in an attempt to determine where the leverage points are to stimulate an economy. 
 This is a Virtual Systemic Inquiry (VSI) Project. Please refer to the  Stimulating an Economy  focus page.

This model is an attempt to understand the interactions within an economy in an attempt to determine where the leverage points are to stimulate an economy.

This is a Virtual Systemic Inquiry (VSI) Project. Please refer to the Stimulating an Economy focus page.

 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.    According to the analysis, logging does not reduce tourism income. Wi
This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.

According to the analysis, logging does not reduce tourism income. With the increase of number of bike guide, tourism income will increase as well. Also, in forest industry, timber income is higher than the harvest spending which means the industry always gain profits from logging. Therefore, the main concern is that the logging should be balanced between the Mountain Tourism and the forest industry.
 Wealth can be seen as the factories,
infrastructure, goods and services the population of a nation dispose of. According
to Tim Garrett,  a scientist who looks at
the economy from the perspective of physics, it is existing wealth that generates
economic activity and growth. This growth demands the

Wealth can be seen as the factories, infrastructure, goods and services the population of a nation dispose of. According to Tim Garrett,  a scientist who looks at the economy from the perspective of physics, it is existing wealth that generates economic activity and growth. This growth demands the use of energy as no activity can take place without its use. He also points out that the use of this energy unavoidably  leads to concentrations of CO2 in the atmosphere.  All this, Tim Garrett says,  follows from the second law of thermodynamics.  If wealth decreases then so does economic activity and growth. The CLD tries to illustrate how wealth, ironically, now generates the conditions and feedback loops  that  may cause it to decline. The consequences are  inevitably economic  stagnation (or secular recession?). 

You can read about the connection Tim Garrett makes between 'Wealth, Economic Growth, Energy and CO2  Emissions' simply by Googling 'Tim Garrett and Economy'.

  Simulates personal accounts over time.    Model based on: http://circularmoney.org
Simulates personal accounts over time.

Model based on:
http://circularmoney.org
   Introduction    This model simulates the COVID-19 outbreaks in Burnie, the government reactions, as well as the economic impact. The government's strategy is based on the number of COVID-19 cases reported and testing rates and recovered.       Assumptions    In the same trend that government poli
Introduction
This model simulates the COVID-19 outbreaks in Burnie, the government reactions, as well as the economic impact. The government's strategy is based on the number of COVID-19 cases reported and testing rates and recovered.

Assumptions
In the same trend that government policy decreases infection, it also reduces economic growth.
When there are ten or fewer COVID-19 cases reported, government policy is triggered.
The economy suffers as a result of an increase in COVID-19 cases.

Interesting insights
The higher testing rates appear to result in a more quick government response, resulting in fewer infectious cases. However, it has a negative influence on the economy.
A model situmalte the relationship between moutain bikes and logging industry in Derby, Tasmania, It explains more when the number of visitors increases or decreses.    How the model works  The left side shows when the number of travellers increase, the income from travellers rental of bike and stay
A model situmalte the relationship between moutain bikes and logging industry in Derby, Tasmania, It explains more when the number of visitors increases or decreses. 

How the model works
The left side shows when the number of travellers increase, the income from travellers rental of bike and stay of hotel increase simultaneously. However, there is a capacity for both parking lots and hotel venues, which means that the top ability of hospitality of Derby. The right side shows the logging industry of Derby and income from logging. It has a impact on how travellers would value Derby moutain.

Insights
As the number of travellers increase, it increases the total income of Derby, and in return, the local government will re-revest in Derby Moutain and will also maintain the forrestry logging industry. 
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Fig 9.5 Integrated China SD model from  Zhang 2018  MIT Thesis Potential housing bubble with
Chinese characteristics
Fig 9.5 Integrated China SD model from Zhang 2018 MIT Thesis Potential housing bubble with Chinese characteristics
 Model supporting research of investment vs. austerity implications. Please refer to additional information on the  SystemsWiki Focus Page  and  Modern Money & Public Purpose Video .

Model supporting research of investment vs. austerity implications. Please refer to additional information on the SystemsWiki Focus Page and Modern Money & Public Purpose Video.

 Model in support of an article being written about the relationship between investment and austerity. See  Version 2  See also: *  Inv vs Aust Sim [IM-2736]  *  Inv & Output 1 [IM-2740]  *  Inv & Output 2 [IM-2741]   @ LinkedIn ,  Twitter ,  YouTube

Model in support of an article being written about the relationship between investment and austerity. See Version 2

See also:
Inv vs Aust Sim [IM-2736]
Inv & Output 1 [IM-2740]
Inv & Output 2 [IM-2741]
 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
Microeconomic measures can produce counterintuitive
'emergent' effects at the macro or systemic level. The commendable act of
saving money by individuals during uncertain economic times has the perverse macroeconomic
effect of making a recession  worse: in aggregate there will be less money availabl
Microeconomic measures can produce counterintuitive 'emergent' effects at the macro or systemic level. The commendable act of saving money by individuals during uncertain economic times has the perverse macroeconomic effect of making a recession  worse: in aggregate there will be less money available for spending, suppressing demand for goods and services. Economists call this effect 'the paradox of thrift'. Similarly, logical efforts by companies in such conditions to reduce their wage bill or their postponement of investment decisions will reduce spending in the economy  and deepen the economic downturn.

What can be done to counteract this harmful dynamic? The missing spending can be replaced by government spending: governments have it within their power to effectively counter economic downturns!

 Model in support of an article being written about the relationship between investment and austerity. See  Version 2  See also: *  Inv vs Aust Sim [IM-2736]  *  Inv & Output 1 [IM-2740]  *  Inv & Output 2 [IM-2741]

Model in support of an article being written about the relationship between investment and austerity. See Version 2

See also:
Inv vs Aust Sim [IM-2736]
Inv & Output 1 [IM-2740]
Inv & Output 2 [IM-2741]


A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" value
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.