Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
A toy model to see what happens to employment when people must move through various states to get to certain jobs
A toy model to see what happens to employment when people must move through various states to get to certain jobs
Rich picture trying to explain in detail the economy of Peru. Year: 2017
Rich picture trying to explain in detail the economy of Peru.
Year: 2017
 This is a system dynamic model to
describe relationship between local logging industry and biking tourism in
Tasmanian Derby Mountain.  In the dynamic model, the left-hand side shows how Derby
get income from local biking tourism. The biking visitors number are influenced
by scenery evaluation whic

This is a system dynamic model to describe relationship between local logging industry and biking tourism in Tasmanian Derby Mountain.

In the dynamic model, the left-hand side shows how Derby get income from local biking tourism. The biking visitors number are influenced by scenery evaluation which depend on local size of forest and influenced government policy support when Biking Tourism income is over 1000 unit. Biking visitors with good recommendation will also back to Mountain Derby and bring income for local in twice or more times.  In the right-hand side, we found the income of logging industry was influenced by local logging growth rate and government policy if local Biking Tourism income is over 1000 unit. The increase of logging industry will also increase local employment which will influence employee cost. This factor will also affect total logging income in Derby Mountain.

 

The simulation results show, with governments support the Biking tourism will increase sharply in the first few years and finally instead local logging industry, at same time bring good environment and save local forest under local increase logging industry. The recommendation graph shows that, the number of good recommendation & bad recommendation for Derby Mountain biking tourism will also increase in high speed in front of few years with data fluctuation but finally maintain in a stable line. Last simulation graph shows that how policy factor influences logging and biking industry. The Government has strong support in local tourism, however, as number of tourists increase, the positive impact from government support will continue decrease. On the contrary, the government support influence will also decease to local logging industry when logging been instead by tourism. 

 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
  ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
Neoliberalism
uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’.
In fact, the money the government spends into the economy in excess of the
taxes is an income, a benefit for the private sector. Whe
Neoliberalism uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’. In fact, the money the government spends into the economy in excess of the taxes is an income, a benefit for the private sector. When the government issues bonds, the money the private sector uses to buy them via banks comes from a residual cushion of dollars that the government already spent into the economy but has not yet taxed back.  If this were not the case, if the government had taxed back all the money it spent into the economy, then the economy could not function. There would be no dollars in the economy, since the government is the sole supplier of U.S. dollars! In the doted rectangle in the graph you can see that the dollars paid to the government for bonds sits in a dollar asset account. When the government issues bonds it simply provides the public and institutions with a desirable money substitute that pays interest i.e. Treasury bonds. It is a swap of one kind of financial asset for another. To register this swap the government debits the dollar asset account and credits the bond account.  When the time comes to redeem (take back) the bonds, all the government does is revers the swap, and that’s all!  When you look at the total amount of finacial assets in the private sector,  these remain constant at $ 25 BN  after the payment of $ 5 BN taxes. This implies that  no lending of financial assets of the private sector to the government has taken place during the swap operation. The money was always there. The debt mountain is an illusion!
The Cred System is an alternative to traditional currency that increases community resiliency and reduces participant's dependence on traditional dollars. This model is a basic description of the Cred System, involving four people and two loops. ​
The Cred System is an alternative to traditional currency that increases community resiliency and reduces participant's dependence on traditional dollars. This model is a basic description of the Cred System, involving four people and two loops.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative.