A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




  ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale e
The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy use in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are dealt with via Li-ion battery storage. Note, however, that seasonal variation of PV is not addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
   Model description:   This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy.     More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death
Model description:
This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy. 

More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death cases to local economy are illustrated. 

The model is based on SIR (Susceptible, Infected and recovered) model. 

Variables:
The simulation takes into account the following variables: 

Variables related to Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate. 

Variables related to Governmental policies: (1): Vaccination mandate. (2): Travel restriction to Burnie. (3): Economic support. (4): Gathering restriction.

Variables related to economic growth: Economic growth rate. 

Adjustable variables are listed in the part below, together with the adjusting range.

Assumptions:
(1): Governmental policies are aimed to control(reduce) Covid-19 infections and affect (both reduce and increase) economic growth accordingly.

(2) Governmental policy will only be applied when reported cases are 10 or more. 

(3) The increasing cases will negatively influence Burnie economic growth.

Enlightening insights:
(1) Vaccination mandate, when changing from 80% to 100%, doesn't seem to affect the number of death cases.

(2) Governmental policies are effectively control the growing death cases and limit it to 195. 

  Overview    A simple model simulates the conflict between adventure tourism (mountain biking) and logging in Derby, Tasmania. It demonstrates how these industries co-exist and in what circumstances would affect the interests of both parties.       How does the model work?    The demand for mountai

Overview 

A simple model simulates the conflict between adventure tourism (mountain biking) and logging in Derby, Tasmania. It demonstrates how these industries co-exist and in what circumstances would affect the interests of both parties. 


How does the model work? 

The demand for mountain biking came from visitors' enjoyment of nature and desire for scenery. Adventure is driven by the excitement of visitors with their experience and friends' recommendations.  

The demand for timber leads to the amount of logging, and its price per log impacts forest revenue. It brought employment opportunities to the local residents in Derby Mountain. The excessive deforestation affects landscapes and scenery, so regrowth is essential. 


Interesting Insights 

The major rebate is reducing park spaces will degrade visitors' experience of enjoyment with nature. Still, at the same time, logging brings significant business benefits to the local residents.  The environmental effect of being well-managed between mountain bikes and logging needs to be depth-explored and balanced. 

A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale e
The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy use in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are dealt with via Li-ion battery storage. Note, however, that seasonal variation of PV is not addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.
 Overview 

 A model which simulates the competition between logging versus adventure
tourism (mountain bike ridding) in Derby Tasmania.  

  
How the model works: 

 Trees grow, and we cut them down because of the demand for Timber and
sell the logs. Mountain bikers and holiday visitors will come t

Overview

A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania. 


How the model works:

Trees grow, and we cut them down because of the demand for Timber and sell the logs. Mountain bikers and holiday visitors will come to the park and this depends on experience and recommendations.  Past experience and recommendations depend on the Scenery, number of trees compared to the visitor and Adventure number of trees and users.  Park capacity limits the number of users.  To utilize highest park capacity, they need to promote to the holiday visitor segment as well. Again, the visit depends on the scenery. So, both mountain biking and forestry (logging) businesses need to contribute a significant amount of revenue to CSR for faster regrowth of trees.


Interesting insights

It looks like a lot of logging doesn't stop people from mountain biking. 

Faster replantation of the tree will balance out the impact created by logging which will give the visitor a positive experience and the number of visitors is both improved. 

To keep the park's popularity in check, the price of wood needs to be high. 

Also, it looks like mountain biking only needs a narrow path.

CSR contribution to nature can be a crucial factor. 

A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.

Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making a compensation to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Neoliberalism
uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’.
In fact, the money the government spends into the economy in excess of the
taxes is an income, a benefit for the private sector. Whe
Neoliberalism uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’. In fact, the money the government spends into the economy in excess of the taxes is an income, a benefit for the private sector. When the government issues bonds, the money the private sector uses to buy them via banks comes from a residual cushion of dollars that the government already spent into the economy but has not yet taxed back.  If this were not the case, if the government had taxed back all the money it spent into the economy, then the economy could not function. There would be no dollars in the economy, since the government is the sole supplier of U.S. dollars! In the doted rectangle in the graph you can see that the dollars paid to the government for bonds sits in a dollar asset account. When the government issues bonds it simply provides the public and institutions with a desirable money substitute that pays interest i.e. Treasury bonds. It is a swap of one kind of financial asset for another. To register this swap the government debits the dollar asset account and credits the bond account.  When the time comes to redeem (take back) the bonds, all the government does is revers the swap, and that’s all!  When you look at the total amount of finacial assets in the private sector,  these remain constant at $ 25 BN  after the payment of $ 5 BN taxes. This implies that  no lending of financial assets of the private sector to the government has taken place during the swap operation. The money was always there. The debt mountain is an illusion!
 ​In a recent report, the World Economic Forum
considered that the use of robots in economic activity will cause far more job
losses in the near future than there will be new ones created. Every economic
sector will be affected. The CLD tries to illustrate the dynamic effects of
replacing human work
​In a recent report, the World Economic Forum considered that the use of robots in economic activity will cause far more job losses in the near future than there will be new ones created. Every economic sector will be affected. The CLD tries to illustrate the dynamic effects of replacing human workers with robots. This  dynamic  indicates that if there is no replacement of the  income forgone by the laid off workers, then the economy will soon grind to a halt. To avoid disaster, there must be enough money in circulation, not parked in off-shore investments, to permit the purchase of all the goods and services produced by robots. The challenge for the government is to make sure that this is  case.  

A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
Houdini SD Model from  Eskanasi 2014   thesis including land and social housing
Houdini SD Model from Eskanasi 2014  thesis including land and social housing
3 11 months ago
A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 26 October 2017 (v2.7): Updated historical wind and PV deployment data for 2015-2016, adding projected PV deployment for 2017. Data via https://en.wikipedia.org/wiki/Growt
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 26 October 2017 (v2.7): Updated historical wind and PV deployment data for 2015-2016, adding projected PV deployment for 2017. Data via https://en.wikipedia.org/wiki/Growth_of_photovoltaics and https://en.wikipedia.org/wiki/Wind_power_by_country.

Update 18 December 2016 (v2.7): Added feature to calculate a global EROI index for all energy sources plus intermittency buffering (currently batteries only, but this could be diversified). The index is calculated specifically in terms of energy services in the form of work and heat. That is, it takes the aggregated energy services made available by all sources as the energy output term, and the energy services required to provided the buffered output as the energy input term.

Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.

Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making an adjustment to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
Haaglanden Social housing Fig 18 SD Model feedback structure from  Eskanasi 2014   thesis Other models in the thesis include middle income households and mortgage debt
Haaglanden Social housing Fig 18 SD Model feedback structure from Eskanasi 2014  thesis Other models in the thesis include middle income households and mortgage debt
11 months ago