Examining the ecosystem of the sea turtle and how that influences its population as an endangered species.
Examining the ecosystem of the sea turtle and how that influences its population as an endangered species.
 Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

 The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about

The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about system behavior and collective understanding among stakeholders regarding connections between specific hydrological regime characteristics affected by management of Ruedi Reservoir and the ecological or biological variables important to local communities. For the sake of simplicity, the model includes mostly unidirectional relationships—feedback loops are exploded to reveal intermediate connections between variables. This approach increases the number of variables represented in the system, perhaps increasing its complexity at first glance. However, the primary benefit to the end user is that the model becomes more readable and explicit in its representation of system behavior. 

 

The conceptual model presented here likely differs by degrees from those held by the various investigators who considered Fryingpan River processes over the previous 80 years. However, it affectively aggregates the ideas main presented by each of those individuals. This model focuses on hydrological and biological variables and does not incorporate the entire diversity of human uses and needs for water from the Fryingpan River (e.g. hydropower production for the City of Aspen, revenue generated in the Town of Basalt by angling activities, etc.).  Rather it attempts to illustrate how the conditional state of important ecosystem characteristics might respond to reservoir management activities that impact typical spring flows, peak flow timing and magnitude, summer flows, fall flows, and winter flows. 

My AP Environmental Homework for the Cats Over Borneo Assignment
My AP Environmental Homework for the Cats Over Borneo Assignment
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Marine plastic is rapidly increasing due to increasing production and use of plastic in all economic activities, short use times and long life times of plastic, and large mismanagement of plastic waste. With this, the threat plastic poses to the marine biosphere is also increasing and will continue
Marine plastic is rapidly increasing due to increasing production and use of plastic in all economic activities, short use times and long life times of plastic, and large mismanagement of plastic waste. With this, the threat plastic poses to the marine biosphere is also increasing and will continue to increase over a long time into the future. Risk knowledge is limited and risk perception and awareness are not resulting in significant mitigation efforts. The case study will aim at modeling the use and life cycles of plastic and the transport paths that lead to plastic entering the ocean. The models will be used to simulate possible futures based on a scenario approach. The results of these efforts will be visualized with the goal to increase risk awareness.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
 Interplay between wolves eating sheep and farmers killing wolves who kill deer that eat crops that feed sheep.

Interplay between wolves eating sheep and farmers killing wolves who kill deer that eat crops that feed sheep.

Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
This model illustrates predator prey interactions using real-life data of fox and rabbit populations.
This model illustrates predator prey interactions using real-life data of fox and rabbit populations.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
 Allison Zembrodt's Model    This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data f
Allison Zembrodt's Model

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

equations I used in kill rate :

power model - 12*0.1251361120909615*([Moose]/[Wolves])^.44491970277839954*[Wolves]


Kill rate sqrt = 12*(0.0933207+.0873463*([Moose]/[Wolves])^.5)*[Wolves]


Holling Type III - ((0.986198*([Moose]/[Wolves])^2)/ (601.468 +([Moose]/[Wolves])^2))*[Wolves]*12


linear - 12*[Wolves]*(.400271+.00560299([Moose]/[Wolves]))