Here we model the population of Algeria given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the
Here we model the population of Algeria given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the net birth rate would be zero, and used this year for our birth and death rates to are equal to zero. We assumed no net movement of people into or out of Algeria.
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


  Learning is one section of the of the holistic 4 L (Learning, Loving, Living and Life-work) Dimension.   With the learning the cognitive-spiritual dimension is meant, by increase of the level, from beginner to legend. From ability over implementation to economic relevance is a need of consistent f
Learning is one section of the of the holistic 4 L (Learning, Loving, Living and Life-work) Dimension.
With the learning the cognitive-spiritual dimension is meant, by increase of the level, from beginner to legend. From ability over implementation to economic relevance is a need of consistent further developement for each individual person.
From values there originates a vision and from a vision aims.
SIMULATION is not finished
Here I've translated the macoreconomic rule 'SPENDING = INCOME = OUTPUT, WHICH DRIVES EMPLOYMENT' into a negative feedback loop by adding an explicit goal of Output and Employment. As shown in 'Investment and Output 1', all the income earned has to be spent to maintain output and employment. Any sho
Here I've translated the macoreconomic rule 'SPENDING = INCOME = OUTPUT, WHICH DRIVES EMPLOYMENT' into a negative feedback loop by adding an explicit goal of Output and Employment. As shown in 'Investment and Output 1', all the income earned has to be spent to maintain output and employment. Any shorfall in spending can be made up by any of the three sectors that contribute to total output. However, when spending/investment by the private sector is too small to maintain the required level of overall spending and the exports do not contribute enough to compensate for this shortfall then only the government can save the day through Net Spending, i.e. spending more than it collects in tax revenue. Taxation at any rate, according to Modern Monetary Theory (MMT) does not serve the purpose of financing spending but can be used legitimately to slow down an overheating economy. I have not taken into account 'structural reforms', which are often subject to the 'Fallacy of Composition' and of dubious value, at least in a recessive climate, according to MMT.
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunb
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
  Goodwin Model:   This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013),  Money and Macroeconomic Dynamics , Chapter 4.5 ( link )     Equilibrium conditions:   Labor Supply  = 100  Devation from the equilibrium conditions generates growth cycles.
Goodwin Model:
This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013), Money and Macroeconomic Dynamics, Chapter 4.5 (link)

Equilibrium conditions:
  • Labor Supply = 100
Devation from the equilibrium conditions generates growth cycles.
A variant that show growth limitation without collapse. Further development may include a collapse and recovery scenario, using delays.
A variant that show growth limitation without collapse. Further development may include a collapse and recovery scenario, using delays.
 Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I

Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.

Modèle simple pour illustrer la croissance des huîtres sur la base de la production primaire de phytoplancton comme une variable d'état, forcé par la lumière et les éléments nutritifs, en cours d'exécution pour une période annuelle.

La croissance du phytoplancton sur la base de Steele et équations de Michaelis-Menten), où:

Production primaire = (([Pmax] * [I] / [Iopt] * exp (1 - [I] / [Iopt]) * [S]) / ([K] + [S]))

Pmax: production maximale (d-1)
I: L'énergie lumineuse en profondeur de l'intérêt (Ue m-2 s-1)
Iopt: L'énergie lumineuse à laquelle se produit Pmax (Ue m-2 s-1)
S: concentration des éléments nutritifs (N umol L-1)
KS: Demi constants de saturation en nutriments (N umol L-1).

D'autres développements:
- Les éléments nutritifs comme variable d'état dans le cycle de détritus de phytoplancton et d'huîtres de la biomasse.
- Lumière limitée par la concentration de phytoplancton.
- Effet de la température sur le phytoplancton et la croissance des huîtres.

OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunb
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Simple customer growth stock and flow model that considers the impact of referrals, conversion rate and market size.
Simple customer growth stock and flow model that considers the impact of referrals, conversion rate and market size.
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel. Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel.
Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Here we model the population of Haiti, a relativly underdeveloped country, given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the ne
Here we model the population of Haiti, a relativly underdeveloped country, given data between 1960 and 2013 from Worldbank.org. We used the crude birth rate and crude death rate for every 5 years since 1960 to 2005, and the rates every year from 2005 to 2013. To forecast, we used the slope of the net birth rate to calculate when the net birth rate would be zero, and used this year for our birth and death rates to are equal to zero. We assumed no net movement of people into or out of Haiti.
Simple model to illustrate   algal  ,   growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp
Simple model to illustrate   algal  ,   growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.

  Biogas, model  as well birefineray option to seperate c02 , chp from bogas model are proposed
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.