Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
Homework 7 Sandmann
Insight diagram
This version 8B of the CAPABILITY DEMONSTRATION model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further developed and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
Version 8B with story: Calibrated Student-Home-Teachers-Classroom-LEA-Spending
Insight diagram
Spring, 2020:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-6, we recover their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  * http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb

  * http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA-with-Flattening.nb

Key for Lab SIR 2 -- Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) Model for Coronavirus
Insight diagram
Assessment Task [ASS4] 'STP - M3 System Dynamics - Causal Loop Diagrams
Insight diagram
One layer atmosphere model
Climate Box Model
7 3 months ago
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This is a clone of "Fast Fashion ISCI 360 Solutions Final submission" created by user "V B" which we are using as the foundation for an exercise in the DTU course 12100 "Quantitative sustainability".

The model takes into account clothing production and textile waste on a global scale while incorporating Vancouver's own "Fast Fashion" issue into the model.

Please refer to the notes for each variable and stock to see which links were hidden from the model.

Part 2: Our solution for the issue surrounding "Fast Fashion" focuses on increasing individuals education about sustainability and how they can help reduce negative impacts on the environment by shopping less, recycling and donating. This effect of education on sustainability is seen in the "Online Shopping" equation where the impact of "Education on Sustainability" is increased by x1.5 which impacts the entire model. Furthermore, components of the feedback loop on the right are also influenced by increasing education on sustainability and thus, those values were altered accordingly. These values were chosen arbitrarily by taking into account that doubling any value is not realistic so the change should be between x1.0 and x2.0.
Clone of Clone of Fast Fashion ISCI 360 Solutions Final Edit
2 months ago
Insight diagram
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  1. http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb
  2. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death
Insight diagram
Attempts to model in the social dynamics of returning players
Clone of Streamer Social Media Virality 7 w Player loop
Insight diagram
Commodity cycle model
Insight diagram
This is a clone of "Fast Fashion ISCI 360 Solutions Final submission" created by user "V B" which we are using as the foundation for an exercise in the DTU course 12100 "Quantitative sustainability".

The model takes into account clothing production and textile waste on a global scale while incorporating Vancouver's own "Fast Fashion" issue into the model.

Please refer to the notes for each variable and stock to see which links were hidden from the model.

Part 2: Our solution for the issue surrounding "Fast Fashion" focuses on increasing individuals education about sustainability and how they can help reduce negative impacts on the environment by shopping less, recycling and donating. This effect of education on sustainability is seen in the "Online Shopping" equation where the impact of "Education on Sustainability" is increased by x1.5 which impacts the entire model. Furthermore, components of the feedback loop on the right are also influenced by increasing education on sustainability and thus, those values were altered accordingly. These values were chosen arbitrarily by taking into account that doubling any value is not realistic so the change should be between x1.0 and x2.0.
Clone of Clone of Fast Fashion ISCI 360 Solutions Final Edit
9 months ago
Insight diagram
Clone of Streamer Social Media Virality
10 months ago
Insight diagram
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  1. http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb
  2. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death
Insight diagram
This is a clone of "Fast Fashion ISCI 360 Solutions Final submission" created by user "V B" which we are using as the foundation for an exercise in the DTU course 12100 "Quantitative sustainability".

The model takes into account clothing production and textile waste on a global scale while incorporating Vancouver's own "Fast Fashion" issue into the model.

Please refer to the notes for each variable and stock to see which links were hidden from the model.

Part 2: Our solution for the issue surrounding "Fast Fashion" focuses on increasing individuals education about sustainability and how they can help reduce negative impacts on the environment by shopping less, recycling and donating. This effect of education on sustainability is seen in the "Online Shopping" equation where the impact of "Education on Sustainability" is increased by x1.5 which impacts the entire model. Furthermore, components of the feedback loop on the right are also influenced by increasing education on sustainability and thus, those values were altered accordingly. These values were chosen arbitrarily by taking into account that doubling any value is not realistic so the change should be between x1.0 and x2.0.
Clone of Clone of Fast Fashion ISCI 360 Solutions Final Edit
Insight diagram
First draft of obesity model for testing
Obesity 1 PJK
Insight diagram

First test model to decribe weight loss by reduced calorie intake through 5:2 fasting

First test model 5:2 fast PJK
Insight diagram
This model simulates the growth of a human population based on  factors such as birth rate, death rate, and  carrying capacity. It calculates population change dynamically using human growth rate influenced by the maximum birth rate and minimum death rate. The carrying capacity (K) limits population growth, ensuring the model reflects realistic constraints. This model can be applied globally or locally to study how populations evolve over time and respond to changes in resources and other external factors.
Human Population Growth Model
Insight diagram
Clone of Streamer Social Media Virality
14 10 months ago
Insight diagram
anz plus engineering model
last month
Insight diagram
A combination of qualitative and quantitative methods for implementing a systems approach, including virtual intervention experiments using computer simulation models. See also Complex Decision Technologies IM
Interventions and leverage points added in IM-1400 (complex!)
Clone of Systems Methods