This model tries to show the effect of car-sharing (CS) and its possible effect on reducing CO2 emission over a time period of 20 years. The main target of car-sharing is to reduce individual car ownership and the total number of cars on. In addition to that, with more fuel-efficient cars and the in
This model tries to show the effect of car-sharing (CS) and its possible effect on reducing CO2 emission over a time period of 20 years. The main target of car-sharing is to reduce individual car ownership and the total number of cars on. In addition to that, with more fuel-efficient cars and the increased use of electric cars it could be an effective tool to reduce CO2 emissions.

We assumed that the total travel demand (yearly driven passenger units) shifts from private car ownership to CS services over a time of 20 years [1]. The possibility of buying a private car and a CS car is calculated by dividing the travel demand and the maximal travel demand possible, multiplied by the number of families without a private car respectively with the number of CS families. Private cars will abrade increasing the number of families without a car. However, in our model they will decide to join CS thereby increasing the number of CS families. By this the number of private cars will decrease while number of CS cars will increase. Gasoline CS cars will change over time into electric CS cars with a benefit for the CO2 emission due to lower lifecycle emission. Since CS cars are utilized more, they will abrade faster. However, this will overall result in more fuel efficient cars with another benefit for CO2 emissions.

Private Autos(100.000) Familien ohne private Autos(20.000) CS Familien(1.000) CS Autos - Benzin( 5.000) Bedarf private Autos(1.920.000.000 yearly passanger distance) Umstiegsrate(0.25) Kraftstoffeffizienz(0.15) CO2 emission of gasoline car(24 t CO2) [2] CO2 emission of electric car(19 t CO2)[2]

Thing to try (with influence on CO2 emission of CS cars):
Change the exchange-rate with which CS cars with gasoline motor are exchanged by electric motor  Change the fuel-efficiency of CS cars Both will influence the reduction of CO2 emission by CS cars

Extending the model:Demand for public transportation Would create a more realistic model since there are not only the options of having a private car or using CS.Public transportation could help reduce overall CO2 emissions.

Credits and references:

[1] Kawaguchi, T. (2019). Scenario Analysis of Car- and Ride-Sharing Services Based on Life Cycle Simulation. Procedia CIRP. 80: 328-333
[2] Low Carbon Vehicle Partnership. (2015). Lifecycle emissions from cars.


 From  Werner Ulrich 's JORS Articles Operational research and critical systems thinking – an integrated perspective.  Part 1 : OR as applied systems thinking.  Journal of the Operational Research Societ y advance online publication (14 December 2011). and  Part 2  :OR as argumentative practice.

From Werner Ulrich's JORS Articles Operational research and critical systems thinking – an integrated perspective. Part 1: OR as applied systems thinking. Journal of the Operational Research Society advance online publication (14 December 2011). and Part 2 :OR as argumentative practice.

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 IM-1175 with computable arguments, based on ideas from Micropublications  paper  about Claims, Evidence, Representations and Context Networks

IM-1175 with computable arguments, based on ideas from Micropublications paper about Claims, Evidence, Representations and Context Networks

 From  Werner Ulrich 's JORS Articles Operational research and critical systems thinking – an integrated perspective.  Part 1 : OR as applied systems thinking.  Journal of the Operational Research Societ y advance online publication (14 December 2011). and  Part 2  :OR as argumentative practice.

From Werner Ulrich's JORS Articles Operational research and critical systems thinking – an integrated perspective. Part 1: OR as applied systems thinking. Journal of the Operational Research Society advance online publication (14 December 2011). and Part 2 :OR as argumentative practice.

 When projects attempt to please too many customers, complexity mounts, schedules slip, costs expand ... and no one is happy. From William E. Novak and  Linda Levine CMU SEI Sept 2010 Success in Acquisition: Using Archetypes to Beat the Odds  paper  and see  webpage

When projects attempt to please too many customers, complexity mounts, schedules slip, costs expand ... and no one is happy. From William E. Novak and  Linda Levine CMU SEI Sept 2010 Success in Acquisition: Using Archetypes to Beat the Odds paper and see webpage



8 months ago