This model simulates the basic dynamics of a water reservoir, including the impact of rainfall, community water consumption, conservation efforts, and evaporation. The model shows how the reservoir’s water level changes over time based on natural inflows and human , nature water use.
This model simulates the basic dynamics of a water reservoir, including the impact of rainfall, community water consumption, conservation efforts, and evaporation. The model shows how the reservoir’s water level changes over time based on natural inflows and human , nature water use.
  About
the Model  

 This
model is designed to simulate the youth population in Bourke, specifically
focusing on the number of criminals and incarcerated dependent on a few key
variables. 

 Within the model, a young person living in Bourke can be classified as being in any of five states:  Young C

About the Model

This model is designed to simulate the youth population in Bourke, specifically focusing on the number of criminals and incarcerated dependent on a few key variables.

Within the model, a young person living in Bourke can be classified as being in any of five states:

Young Community Member: The portion of the youth population that is not committing crime and will not commit crime in the future. Essentially the well behaved youths. A percentage of these youths will become alienated and at risk.

Alienated and At Risk Youths: The youths of Bourke that are on the path of becoming criminals, this could be caused by disruptive home lives, alcohol and drug problems, and peer pressure, among other things.

Criminal: The youths of Bourke who are committing crimes. Of these criminals a percentage will be caught and convicted and become imprisoned, while the remainder will either go back to being at risk and commit more crimes, or change their behaviour and go back to being a behaving community member.

Imprisoned: The youths of Bourke who are currently serving time in a juvenile detention centre. Half of the imprisoned are released every period at a delay of 6 months.

Released: Those youths that have been released from a detention centre. All released youths either rehabilitate and go back to being a community member or are likely to re-offend and become an alienated and at risk youth.

The variables used in the model are:

Police- This determines the police expenditure in Bourke, which relates to the number of police officers, the investment in surveillance methods and investment in criminal investigations. The level of expenditure effects how many youths are becoming criminals and how many are being caught. An increase in police expenditure causes an increase in imprisoned youths and a decrease in criminals.

Community Engagement Programs- The level of investment in community engagement programs that are targeted to keep youths in Bourke from becoming criminals. The programs include sporting facilities and clubs, educational seminars, mentoring programs and driving lessons. Increasing the expenditure in community engagement programs causes more young community members and less criminals and at risk youths.

Community Service Programs- The level of investment in community service programs that are provided for youths released from juvenile detention to help them rehabilitate and reintegrate back into the community. An increase in community service expenditure leads to more released prisoners going back into the community, rather than continuing to be at risk. Since community service programs are giving back to the community, the model also shows that an increase in expenditure causes a decrease in the amount of at risk youths.

All three of these variables are adjustable. The number of variables has been kept at three in order to ensure the simulation runs smoothly at all times without complicated outputs, limitations have also been set on how the variables can be adjusted as the simulation does not act the same out of these boundaries.

Key Assumptions:

The model does not account for the youths’ memory or learning.

There is no differentiation in the type of criminals and the sentences they serve. Realistically, not all crimes would justify juvenile detention and some crimes would actually have a longer than six-month sentence.

The constants within in the calculations of the model have been chosen arbitrarily and should be adjusted based on actual Bourke population data if this model were to be a realistic representation of Bourke’s population.

The model assumes that there are no other factors affecting youth crime and imprisonment in Bourke.

There are 1500 youths in Bourke. At the beginning of the simulation:

Young Community Member = 700

Alienated and At Risk Youth = 300

Criminal = 300

Imprisoned = 200

Noteworthy observations:

Raising Police expenditure has a very minimal effect on the number of at risk youths. This can be clearly seen by raising Police expenditure to the maximum of twenty and leaving the other two variables at a minimum. The number of Alienated and at Risk Youths is significantly higher than the other states.

Leaving Police expenditure at the minimum of one and increasing community development programs and community service programs to their maximum values shows that, in this model, crime can be decreased to nearly zero through community initiatives alone.

Leaving all the variables at the minimum position results in a relatively large amount of crime, a very low amount of imprisoned youth, and a very large proportion of the population alienated and at risk.

An ideal and more realistic simulation can be found by using the settings: Police = 12, Community Engagement Programs = 14, Community Service Programs = 10. This results in a large proportion of the population being young community members and relatively low amounts of criminals and imprisoned.



Builds on earlier model for the Thinking Systemically segment of STCP. Develops EaBT approach further based on NM example. Describes innovation in a service delivery/consulting organisation whose clients expect/demand "innovation" due to their own lack of ability to improve.
Builds on earlier model for the Thinking Systemically segment of STCP. Develops EaBT approach further based on NM example.
Describes innovation in a service delivery/consulting organisation whose clients expect/demand "innovation" due to their own lack of ability to improve.

Builds on earlier model for the Thinking Systemically segment of STCP. Develops EaBT approach. Describes innovation in a service delivery/consulting organisation whose clients expect/demand "innovation" due to their own lack of ability to improve.
Builds on earlier model for the Thinking Systemically segment of STCP. Develops EaBT approach.
Describes innovation in a service delivery/consulting organisation whose clients expect/demand "innovation" due to their own lack of ability to improve.

A student thought of this model.  It is based on the water flow data and projections on pages 68 and 69 of LTG30.   It models all the available freshwater in rivers and dams in one year, which is represented as a stock.   The water flowing in is all the world's runoff, and the water flowing out is i
A student thought of this model.  It is based on the water flow data and projections on pages 68 and 69 of LTG30.  
It models all the available freshwater in rivers and dams in one year, which is represented as a stock. 
The water flowing in is all the world's runoff, and the water flowing out is in two categories: Water used by people, and water not used by people.
This model uses a converter which allowed us to enter the UN projection of water use in 2050.  Click on the converter to see how it works.
           This version of the   CAPABILITY DEMONSTRATION   model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Re
This version of the CAPABILITY DEMONSTRATION model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further de-abstracted and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
 The model simulates the local environmental (specifically greenhouse gas emissions), economic, and resource impacts of transitioning from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs) for personal ownership in New York City in the context of a sustainable program of new ene
The model simulates the local environmental (specifically greenhouse gas emissions), economic, and resource impacts of transitioning from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs) for personal ownership in New York City in the context of a sustainable program of new energy vehicles, which is the context of the current era. To be realistic, we combine delay and stochasticity in this model to simulate the real world. By understanding the model, one can gain insight into the importance of EV penetration for sustainable development.

11 months ago
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 From  Werner Ulrich 's JORS Articles Operational research and critical systems thinking – an integrated perspective.  Part 1 : OR as applied systems thinking.  Journal of the Operational Research Societ y advance online publication (14 December 2011). and  Part 2  :OR as argumentative practice.

From Werner Ulrich's JORS Articles Operational research and critical systems thinking – an integrated perspective. Part 1: OR as applied systems thinking. Journal of the Operational Research Society advance online publication (14 December 2011). and Part 2 :OR as argumentative practice.

 From  Werner Ulrich 's JORS Articles Operational research and critical systems thinking – an integrated perspective.  Part 1 : OR as applied systems thinking.  Journal of the Operational Research Societ y advance online publication (14 December 2011). and  Part 2  :OR as argumentative practice.

From Werner Ulrich's JORS Articles Operational research and critical systems thinking – an integrated perspective. Part 1: OR as applied systems thinking. Journal of the Operational Research Society advance online publication (14 December 2011). and Part 2 :OR as argumentative practice.

 IM-1175 with computable arguments, based on ideas from Micropublications  paper  about Claims, Evidence, Representations and Context Networks

IM-1175 with computable arguments, based on ideas from Micropublications paper about Claims, Evidence, Representations and Context Networks