The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
4 months ago
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
4 months ago
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
 Dieses Causal
Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des
Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich
eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem
Bezug ist der R-Wert. Wenn der R-Wert unter

Dieses Causal Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem Bezug ist der R-Wert. Wenn der R-Wert unter 1 liegt, dann heisst das, dass eine infizierte Person während des Zeitraums, in dem sie infektiös ist, weniger als eine andere Person infiziert.  Liegt der Wert über 1, dann steckt die Infizierte mehr als eine andere Person an, und das Virus verbreitet sich exponentiell. Die Schleifen, die blaue Pfeile enthalten, sind negative Rückkopplungsschleifen – sie bremsen die Verbreitung des Virus. Das Diagramm suggeriert, dass der R-Wert als Schlüssel zur Kontrolle der Verbreitung des Virus dienen könnte. Sollte der Wert über 1 steigen, so müssten  Schutzmassnahem eingeführt werden. Ist der Wert unter 1, dann sind die negativen Schleifen dominierend und einige Massnahmen könnten gelockert werden. 

A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
This Model described the outbreak simulation under government policy and impacts on Economics.     Assumptions    The social distance policy can reduce 80% of infection.        Interesting Insights   The story tell the difference when social distance applied or not        Click on View story to star
This Model described the outbreak simulation under government policy and impacts on Economics.

Assumptions 
The social distance policy can reduce 80% of infection.

Interesting Insights
The story tell the difference when social distance applied or not

Click on View story to start simulations

Initial data from: Italian data [ link ], as of Mar 28  Incubation estimation [ link ]      Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Initial data from:
Italian data [link], as of Mar 28
Incubation estimation [link

Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced ASAP after the first case of Covid-19 is repor
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced ASAP after the first case of Covid-19 is reported.

This model is based on the SIR, Susceptible, Infection, Recovery (or Removed) These are the three possible states related to the members of the Burnie population when a contagious decease spreads.

The Government/Government Health Policy, played a big part in the successful decrease in Covid-19 infections. The Government enforced
- No travel
- Isolation within the residents homes
- Social distancing by 1.5m
- Quarantine
- Non essential companies to be temporarily closed
- Limitations on public gatherings
- And limits on time and kilometers aloud to travel from ones home

This resulted in lower reported infection rates of Covid-19 and higher recovery rates.
* When the first case was reported the Government could have been even faster to enforce these rules to decrease the fatality rates further for the Burnie, population.  



 This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies.      Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining polic
This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies. 

Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining policy by changing the settings below.  First explore changing the start date with a policy duration of 60 days.
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative. 




 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment