This model simulates a waterborne illness spread from a central reservoir. It illustrates the combination of System Dynamics (modeling pathogen levels in the reservoir) and Agent Based Modeling.    Make sure to check out the Map display to see the geographic clustering of disease incidence around th
This model simulates a waterborne illness spread from a central reservoir. It illustrates the combination of System Dynamics (modeling pathogen levels in the reservoir) and Agent Based Modeling.

Make sure to check out the Map display to see the geographic clustering of disease incidence around the reservoir.
 A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 A Susceptible-Infected-Recovered (SIR) disease model for Rage

A Susceptible-Infected-Recovered (SIR) disease model for Rage

A simple Susceptible - Infected - Aids Patient disease model.
A simple Susceptible - Infected - Aids Patient disease model.
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 A Susceptible-Infected-Recovered (SIR) disease model

A Susceptible-Infected-Recovered (SIR) disease model

A Susceptible - Infected - Recovered disease as a stock and flow model for COVID.
A Susceptible - Infected - Recovered disease as a stock and flow model for COVID.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
Medición de la concentración de farmaco en plasma sanguineo en el tiempo. Se ha modificado el calulo de niveles toxicos del farmaco. Se interpreta que a valores mas altos, mas toxico es. El peso del paciente se mide en Kg y la dosis en milígramos.
Medición de la concentración de farmaco en plasma sanguineo en el tiempo. Se ha modificado el calulo de niveles toxicos del farmaco. Se interpreta que a valores mas altos, mas toxico es.
El peso del paciente se mide en Kg y la dosis en milígramos.
 SIR model with waning immunity - Metrics by Guy Lakeman   A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

SIR model with waning immunity - Metrics by Guy Lakeman

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity


Tutorial model of disease dynamics using ABM
Tutorial model of disease dynamics using ABM
A simple Susceptible - Infected - Recovered disease as a stock and flow model.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A simple Susceptible - Infected - Recovered disease as a stock and flow model.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

 SIR model with herd immunity - Metrics by Guy Laekman   A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

SIR model with herd immunity - Metrics by Guy Laekman

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
This systems model will help students understand the different systems that make up our body and how choices we make can impact how those systems work. Factors are based on daily choices.
This systems model will help students understand the different systems that make up our body and how choices we make can impact how those systems work.
Factors are based on daily choices.
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.